Jb Monton

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4979966/jb-monton-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

85 2,042 25 40 h-index g-index citations papers 89 2,149 3.3 4.51 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
85	Azeotropic distillation for 1-propanol dehydration with diisopropyl ether as entrainer: Equilibrium data and process simulation. <i>Separation and Purification Technology</i> , 2019 , 212, 692-698	8.3	32
84	Study of separation of water + 2-propanol mixture using different ionic liquids: 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. <i>Journal of Chemical Thermodynamics</i> , 2018 , 116, 32-41	2.9	6
83	Experimental Determination and Correlation of Liquid Liquid Equilibria Data for a System of Water + Ethanol + 1-Butyl-3-methylimidazolium Hexafluorophosphate at Different Temperatures. <i>Journal of Chemical & Different Temperatures</i> . 2017, 62, 773-779	2.8	9
82	Proposal of Isobutyl Alcohol as Entrainer To Separate Mixtures Formed by Ethanol and Water and 1-Propanol and Water. <i>Journal of Chemical & Engineering Data</i> , 2017 , 62, 2697-2707	2.8	2
81	Measurement and correlation of liquid-liquid equilibria at different temperatures in water 1-propanol 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ternary systems. Fluid Phase	2.5	19
80	Approach to the 1-propanol dehydration using an extractive distillation process with ethylene glycol. <i>Chemical Engineering and Processing: Process Intensification</i> , 2015 , 91, 121-129	3.7	18
79	Answer to the Letter to the Editor by Dr. Sanjay Pralhad Shirsat concerning the article Beparation of isobutyl alcohol and isobutyl acetate by extractive distillation and pressure-swing distillation: Simulation and optimization[[Separation and Purification Technology, 2015, 154, 367]	8.3	
78	Thermodynamic Analysis and Process Simulation of Ethanol Dehydration via Heterogeneous Azeotropic Distillation. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 6084-6093	3.9	31
77	Isobaric Vapor[liquid[liquid Equilibria for the Ternary Systems Ethanol + Water + Propyl Acetate and 1-Propanol + Water + Propyl acetate. <i>Journal of Chemical & Data</i> , 2014, 59, 2054-7	2064	14
76	Liquid II quid equilibria of 4-methyl-2-pentanone+1-propanol or 2-propanol+water ternary systems: Measurements and correlation at different temperatures. <i>Fluid Phase Equilibria</i> , 2014 , 361, 23-29	2.5	37
75	Evaluation of the 2-Methoxyethanol as Entrainer in Ethanol Water and 1-Propanol Water Mixtures. Journal of Chemical & Data, 2013, 58, 3504-3512	2.8	11
74	Phase equilibria for the ternary systems ethanol, water + ethylene glycol or + glycerol at 101.3 kPa. <i>Fluid Phase Equilibria</i> , 2013 , 341, 54-60	2.5	26
73	Measurements and correlation of liquid IIquid equilibria of 4-methyl-2-pentanone + ethanol + water and 4-methyl-2-pentanone + n-butanol + water ternary systems between 283.2 and 323.2 K. Fluid Phase Equilibria, 2012, 317, 89-95	2.5	27
72	Separation of di-n-propyl ether and n-propyl alcohol by extractive distillation and pressure-swing distillation: Computer simulation and economic optimization. <i>Chemical Engineering and Processing: Process Intensification</i> , 2011 , 50, 1266-1274	3.7	53
71	Measurements and correlation of vapour[Iquid equilibria of 2-butanone and hydrocarbons binary systems at two different pressures. <i>Fluid Phase Equilibria</i> , 2011 , 307, 24-29	2.5	5
7°	Liquid[liquid and Vapor[liquid[liquid Equilibrium of the 4-Methyl-2-pentanone + 2-Butanol + Water System. <i>Journal of Chemical & Data</i> , 2011, 56, 1925-1932	2.8	13
69	Liquid[liquid and Vapor[liquid[liquid Equilibrium of the 2-Butanone + 2-Butanol + Water System. Journal of Chemical & amp; Engineering Data, 2011, 56, 1755-1761	2.8	11

(2006-2010)

68	Isobaric Vapor[liquid Equilibria for Binary and Ternary Mixtures of Ethanol and 2-Propanol with 2-Butanone and Butyl Propionate at 101.3 kPa. <i>Journal of Chemical & Discounty Engineering Data</i> , 2010 , 55, 798-803	2.8	11
67	Liquid Liquid Equilibria for the System 1-Methyl Propyl Ethanoate (1) + Acetic Acid (2) + Water (3) at (283.15 and 323.15) K. <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 523-525	2.8	7
66	Phase equilibrium for the systems diisopropyl ether, isopropyl alcohol+2,2,4-trimethylpentane and +n-heptane at 101.3kPa. <i>Fluid Phase Equilibria</i> , 2010 , 289, 135-139	2.5	7
65	Isobaric vapour[Iquid equilibria for the binary systems 4-methyl-2-pentanone + 1-butanol and + 2-butanol at 20 and 101.3 kPa. <i>Fluid Phase Equilibria</i> , 2009 , 277, 49-54	2.5	19
64	Isobaric Vaporlliquid Equilibria for Binary and Ternary Mixtures of Diisopropyl Ether, 2-Propyl Alcohol, and n-Butyl Propionate at 101.3 kPa. <i>Journal of Chemical & Data</i> , 2009, 54, 299	7:8 1-299	5 ⁵
63	Phase Equilibrium for the Esterification Reaction of Acetic Acid + Butan-1-ol at 101.3 kPa. <i>Journal of Chemical & Engineering Data</i> , 2008 , 53, 108-115	2.8	29
62	Isobaric Vaporlliquid Equilibria for Binary and Ternary Mixtures of Diisopropyl Ether, 2-Propyl Alcohol, and 3-Methyl-1-Butanol. <i>Journal of Chemical & Data</i> , 2008, 53, 1897-1902	2.8	12
61	Liquid II quid equilibria of the systems isobutyl acetate+isobutyl alcohol+water and isobutyl acetate+isobutyl alcohol+glycerol at different temperatures. Fluid Phase Equilibria, 2008, 265, 122-128	2.5	11
60	Isobaric (vapour + liquid + liquid) equilibrium data for (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) systems at 100 kPa. <i>Journal of Chemical Thermodynamics</i> , 2008 , 40, 867-873	2.9	21
59	Isobaric vapour[Iquid equilibria for binary systems of 2-butanone with ethanol, 1-propanol, and 2-propanol at 20 and 101.3 kPa. <i>Fluid Phase Equilibria</i> , 2008 , 270, 62-68	2.5	34
58	Phase Equilibria Involved in Extractive Distillation of Dipropyl Ether + 1-Propyl Alcohol UsingN,N-Dimethylformamide as Entrainer. <i>Journal of Chemical & Engineering Data</i> , 2007 , 52, 532-5	378	9
57	Phase equilibria involved in extractive distillation of dipropyl ether+1-propyl alcohol using 2-ethoxyethanol as entrainer. <i>Fluid Phase Equilibria</i> , 2007 , 255, 62-69	2.5	19
56	Liquid II quid equilibria of the systems dipropyl ether+n-propanol+water and dipropyl ether+n-propanol+ethylene glycol at different temperatures. Fluid Phase Equilibria, 2007, 262, 76-81	2.5	11
55	Effect of pressure and the capability of 2-methoxyethanol as a solvent in the behaviour of a diisopropyl ether&opropyl alcohol azeotropic mixture. Fluid Phase Equilibria, 2007, 262, 271-279	2.5	32
54	Isobaric Vaporlliquid Equilibria for Binary and Ternary Mixtures of Dipropyl Ether, 1-Propyl Alcohol, and Butyl Propionate. <i>Journal of Chemical & Data, 2006</i> , 51, 2233-2238	2.8	11
53	Isobaric vaporliquid equilibria for the binary systems 1-propyl alcohol+dipropyl ether and 1-butyl alcohol+dibutyl ether at 20 and 101.3kPa. <i>Fluid Phase Equilibria</i> , 2006 , 247, 47-53	2.5	24
52	Vaporliquid equilibria in the ternary system dipropyl ether+1-propanol+1-pentanol and the binary systems dipropyl ether+1-pentanol, 1-propanol+1-pentanol at 101.3kPa. <i>Fluid Phase Equilibria</i> , 2006 , 247, 175-181	2.5	16
51	Separation of isobutyl alcohol and isobutyl acetate by extractive distillation and pressure-swing distillation: Simulation and optimization. <i>Separation and Purification Technology</i> , 2006 , 50, 175-183	8.3	87

50	Isobaric vaporlīquid equilibria for the binary systems isobutyl alcohol+isobutyl acetate and tert-butyl alcohol+tert-butyl acetate at 20 and 101.3kPa. <i>Fluid Phase Equilibria</i> , 2005 , 227, 19-25	2.5	32
49	Phase equilibria in the systems isobutyl alcohol+N,N-dimethylformamide, isobutyl acetate+N,N-dimethylformamide and isobutyl alcohol+isobutyl acetate+N,N-dimethylformamide at 101.3kPa. <i>Fluid Phase Equilibria</i> , 2005 , 232, 62-69	2.5	17
48	Phase equilibria in the ternary system isobutyl alcohol+isobutyl acetate+1-hexanol and the binary systems isobutyl alcohol+1-hexanol, isobutyl acetate+1-hexanol at 101.3kPa. <i>Fluid Phase Equilibria</i> , 2005 , 235, 64-71	2.5	11
47	Vaporllquid equilibria in the ternary system isobutyl alcohol + isobutyl acetate + butyl propionate and the binary systems isobutyl alcohol + butyl propionate, isobutyl acetate + butyl propionate at 101.3 kPa. <i>Fluid Phase Equilibria</i> , 2005 , 238, 65-71	2.5	12
46	High-pressure solubility data of system ethanol (1)+epicatechin (2)+CO2 (3). <i>Journal of Supercritical Fluids</i> , 2002 , 24, 103-109	4.2	46
45	Phase Equilibria for 1,1,1,2,3,4,4,5,5,5-Decafluoropentane + 2-Methylfuran, 2-Methylfuran + Oxolane, and 1,1,1,2,3,4,4,5,5,5- Decafluoropentane + 2-Methylfuran + Oxolane at 35 kPa. <i>Journal of Chemical & Data</i> , 2002, 47, 1256-1262	2.8	15
44	High-pressure solubility data of the system resveratrol (3)+ethanol (2)+CO2 (1). <i>Journal of Supercritical Fluids</i> , 2001 , 19, 133-139	4.2	38
43	High-pressure solubility data of system ethanol (1)+catechin (2)+CO2 (3). <i>Journal of Supercritical Fluids</i> , 2001 , 20, 157-162	4.2	67
42	High Pressure Solubility Data of the System Limonene + Linalool + CO2. <i>Journal of Chemical & Engineering Data</i> , 2001 , 46, 1145-1148	2.8	16
41	Polyazeotropic Behavior in the Binary System 1,1,1,2,3,4,4,5,5,5-Decafluoropentane + Oxolane. <i>Journal of Chemical & Data</i> , 2001, 46, 1351-1356	2.8	12
40	Solubilities of Essential Oil Components of Orange in Supercritical Carbon Dioxide. <i>Journal of Chemical & Che</i>	2.8	22
39	Densities, Viscosities, and Refractive Indices of the Binary Systems Methyl tert-Butyl Ether + 2-Methylpentane, + 3-Methylpentane, + 2,3-Dimethylpentane, and + 2,2,4-Trimethylpentane at 298.15 K. <i>Journal of Chemical & Engineering Data</i> , 2000 , 45, 331-333	2.8	51
38	Isobaric Vaporlliquid Equilibria for the Binary System 3-Methylpentane + Ethanol and for the Ternary System 2-Methyl-2-propanol + Ethanol + 3-Methylpentane at 101.3 kPa. <i>Journal of Chemical & Data</i> , 2000 , 45, 882-886	2.8	13
37	Densities, Refractive Indices, and Derived Excess Properties of the Binary Systems Toluene + Isooctane and Methylcyclohexane + Isooctane and the Ternary Systems tert-Butyl Alcohol + Toluene + Isooctane and tert-Butyl Alcohol + Methylcyclohexane + Isooctane at 298.15 K. <i>Journal of</i>	2.8	16
36	Densities, refractive indices, and derived excess properties of the binary systems tert-butyl alcohol+toluene, +methylcyclohexane, and +isooctane and toluene+methylcyclohexane, and the ternary system tert-butyl alcohol+toluene+methylcyclohexane at 298.15 K. <i>Fluid Phase Equilibria</i> ,	2.5	26
35	1999, 166, 53-65 Vaporlliquid Equilibria for the Binary Systems Isobutyl Alcohol + Toluene, + Isooctane, and + Methylcyclohexane at 101.3 kPa. <i>Journal of Chemical & Chemical &</i>	2.8	12
34	Vaporlliquid Equilibria for the Binary Systems tert-Butyl Alcohol + Toluene, + Isooctane, and + Methylcyclohexane at 101.3 kPa. <i>Journal of Chemical & Data</i> , Engineering Data, 1999 , 44, 148-151	2.8	18
33	Isobaric Vapor[liquid Equilibria for the Binary System 3-Methylpentane + 2-Methyl-2-propanol and for the Ternary System Methyl 1,1-Dimethylethyl Ether + 3-Methylpentane + 2-Methyl-2-propanol at 101.3 kPa. <i>Journal of Chemical & Data</i> , 1999, 44, 1386-1390	2.8	6

32	Vaporlliquid Equilibria for the Binary Systems Isobutanol with m-Xylene, o-Xylene and p-Xylene at 101.3 kPa. <i>Journal of Chemical & Engineering Data</i> , 1999 , 44, 869-872	2.8	13
31	Isobaric Vapor[liquid Equilibrium in the Systems 2,3-Dimethylpentane + Methyl 1,1-Dimethylethyl Ether, + Diisopropyl Ether and + Methyl 1,1-Dimethylpropyl Ether. <i>Journal of Chemical &</i> Engineering Data, 1999 , 44, 1158-1162	2.8	9
30	Nonazeotropy in the System Methyl Ethanoate + 1,2-Epoxybutane. <i>Journal of Chemical & Engineering Data</i> , 1997 , 42, 1195-1200	2.8	11
29	VaporLiquid Equilibria for the Binary Systems of Methylcyclohexane with 1-Propanol, 2-Propanol, 1-Butanol, and 2-Butanol at 101.3 kPa. <i>Journal of Chemical & Engineering Data</i> , 1997 , 42, 914-918	2.8	17
28	Isobaric Vaporlliquid Equilibria of the Water + 2-Propanol System at 30, 60, and 100 kPa. <i>Journal of Chemical & Data</i> , 1996 , 41, 608-611	2.8	39
27	Polyazeotropy in Binary Systems. 2. Association Effects. <i>Industrial & amp; Engineering Chemistry Research</i> , 1996 , 35, 4194-4202	3.9	15
26	Polyazeotropy in Associating Systems: The 2-Methylpropyl Ethanoate + Ethanoic Acid System. Journal of Chemical & Engineering Data, 1996 , 41, 1191-1195	2.8	32
25	Double Azeotropy in the Benzene + Hexafluorobenzene System. <i>Journal of Chemical & Double Azeotropy in the Benzene + Hexafluorobenzene System. Journal of Chemical & Double Azeotropy in the Benzene + Hexafluorobenzene System. Journal of Chemical & Double Azeotropy in the Benzene + Hexafluorobenzene System. Journal of Chemical & Double Azeotropy in the Benzene + Hexafluorobenzene System. Journal of Chemical & Double Azeotropy in the Benzene + Hexafluorobenzene System. Journal of Chemical & Double Azeotropy in the Benzene + Hexafluorobenzene System. Journal of Chemical & Double Azeotropy in the Benzene + Hexafluorobenzene System. Journal of Chemical & Double & Dou</i>	2.8	25
24	Isobaric VaporDiquid Equilibria for Binary and Ternary Systems Composed of Water, 1-Propanol, and 2-Propanol at 100 kPa. <i>Journal of Chemical & Engineering Data</i> , 1996 , 41, 1379-1382	2.8	7
23	Isobaric Vapor[liquid Equilibria of the Water + 1-Propanol System at 30, 60, and 100 kPa. <i>Journal of Chemical & Chemical</i>	2.8	27
22	Hydrocracking of Vacuum Gasoil on the Novel Mesoporous MCM-41 Aluminosilicate Catalyst. <i>Journal of Catalysis</i> , 1995 , 153, 25-31	7.3	334
21	Isobaric Vapor-Liquid Equilibria of Trichloroethylene with 1-Propanol and 2-Propanol at 20 and 100 kPa. <i>Journal of Chemical & Data</i> , 1995, 40, 332-335	2.8	18
20	Vapor-Liquid Equilibria of the 1-Butanol + o-Chlorophenol System. Effects of Association in the Vapor Phase. <i>Journal of Chemical & Engineering Data</i> , 1995 , 40, 190-193	2.8	5
19	Isobaric Vapor-Liquid Equilibria of 1-Butanol + N,N-Dimethylformamide and 1-Pentanol + N,N-Dimethylformamide Systems at 50.00 and 100.00 kPa. <i>Journal of Chemical & Engineering Data</i> , 1995 , 40, 589-592	2.8	9
18	Reply to "Comments on A. Corma et al.,?On the Compensation Effect in Acid-Base Catalyzed-Reactions on Zeolites?". <i>Journal of Catalysis</i> , 1994 , 148, 415-416	7.3	4
17	Isothermal Vapor-Liquid Equilibria of 1-Pentanol with 2-Methyl-1-butanol, 2-Methyl-2-butanol, and 3-Methyl-2-butanol. <i>Journal of Chemical & Engineering Data</i> , 1994 , 39, 578-580	2.8	12
16	Vapor-Liquid Equilibria for Systems of 1-Butanol with 2-Methyl-1-butanol, 3-Methyl-1-butanol, 2-Methyl-2-butanol, and 3-Methyl-2-butanol at 30 and 100 kPa. <i>Journal of Chemical &</i> Engineering Data, 1994 , 39, 271-274	2.8	15
15	Isobaric vapor-liquid equilibria of ethylbenzene + m-xylene and ethylbenzene + o-xylene systems at 6.66 and 26.66 kPa. <i>Journal of Chemical & Engineering Data</i> , 1994 , 39, 50-52	2.8	11

14	Isobaric Vapor-Liquid Equilibria for Binary and Ternary Systems Composed of 1,4-Dimethylbenzene, 1,3-Dimethylbenzene, and 1,2-Dimethylbenzene at 6.66 and 26.66 kPa. <i>Journal of Chemical & Engineering Data</i> , 1994 , 39, 643-646	2.8	3
13	Isobaric vapor-liquid equilibria of p-xylene + o-xylene and m-xylene + o-xylene systems at 6.66 and 26.66 kPa. <i>Journal of Chemical & Engineering Data</i> , 1994 , 39, 53-55	2.8	9
12	Isobaric vapor-liquid equilibrium data for the cyclohexanone + N-methylacetamide system. <i>Journal of Chemical & Chemical </i>	2.8	8
11	On the Mechanism of Xylene Isomerization and its Limitations as Reaction Test for Solid Acid Catalysts. <i>Studies in Surface Science and Catalysis</i> , 1993 , 75, 1145-1157	1.8	10
10	On the Compensation Effect in Acid-Base Catalyzed Reactions on Zeolites. <i>Journal of Catalysis</i> , 1993 , 142, 97-109	7.3	44
9	Influence of the Structural Parameters of Y Zeolite on the Transalkylation of Alkylaromatics. <i>Journal of Catalysis</i> , 1993 , 140, 384-394	7.3	39
8	Comparison of models in heterogeneous catalysis for ideal and non-ideal surfaces. <i>Chemical Engineering Science</i> , 1988 , 43, 785-792	4.4	23
7	Catalytic cracking of alkanes on large pore, high SiO2/Al2O3 zeolites in the presence of basic nitrogen compounds. Influence of catalyst structure and composition in the activity and selectivity. <i>Industrial & Engineering Chemistry Research</i> , 1987 , 26, 882-886	3.9	29
6	Catalytic activity of large-pore high Si/Al zeolites: Cracking of heptane on H-Beta and dealuminated HY zeolites. <i>Journal of Catalysis</i> , 1987 , 107, 288-295	7.3	69
5	Influence of the process variables on the product distribution and catalyst decay during cracking of paraffins. <i>Applied Catalysis</i> , 1986 , 23, 255-269		12
4	Structural and cracking properties of REHY zeolites. Activity, selectivity, and catalyst-decay optimization for n-heptane cracking. <i>Industrial & Engineering Chemistry Product Research and Development</i> , 1986 , 25, 231-238		22
3	Cracking of n-heptane on a hzsm-5 zeolite. The influence of acidity and pore structure. <i>Applied Catalysis</i> , 1985 , 16, 59-74		32
2	Influence of acid strength distribution on the cracking selectivity of zeolite Y catalysts. <i>Industrial & Engineering Chemistry Product Research and Development</i> , 1984 , 23, 404-409		15
1	Comparison of the activity, selectivity and decay properties of lay and hyultrastable zeolites during		11