Oleh Pochynyuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4979925/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epac1–/– and Epac2–/– mice exhibit deficient epithelial Na+ channel regulation and impaired urinary Na+ conservation. JCI Insight, 2022, 7, .	5.0	5
2	ClCâ€K2 Cl ^{â^'} channel allows identification of A―and Bâ€ŧype of intercalated cells in splitâ€opened collecting ducts. FASEB Journal, 2022, 36, e22275.	0.5	5
3	Evolving concepts of TRPV4 in controlling flow-sensitivity of the renal nephron. Current Topics in Membranes, 2022, , 75-94.	0.9	3
4	Angiotensin II increases activity of the ClC-K2 Clâ^' channel in collecting duct intercalated cells by stimulating production of reactive oxygen species. Journal of Biological Chemistry, 2021, 296, 100347.	3.4	9
5	With-No-Lysine Kinase 1 (WNK1) Augments TRPV4 Function in the Aldosterone-Sensitive Distal Nephron. Cells, 2021, 10, 1482.	4.1	7
6	Polymodal roles of TRPC3 channel in the kidney. Channels, 2020, 14, 257-267.	2.8	10
7	PF-06869206 is a selective inhibitor of renal P _i transport: evidence from in vitro and in vivo studies. American Journal of Physiology - Renal Physiology, 2020, 319, F541-F551.	2.7	10
8	Adenosine inhibits the basolateral Clâ^'ClC-K2/b channel in collecting duct intercalated cells. American Journal of Physiology - Renal Physiology, 2020, 318, F870-F877.	2.7	3
9	TRP Channels in Renal Epithelia. Physiology in Health and Disease, 2020, , 1081-1129.	0.3	0
10	A peek into Epac physiology in the kidney. American Journal of Physiology - Renal Physiology, 2019, 317, F1094-F1097.	2.7	5
11	TRPV4 deletion protects against hypokalemia during systemic K ⁺ deficiency. American Journal of Physiology - Renal Physiology, 2019, 316, F948-F956.	2.7	7
12	TRPC3 determines osmosensitive [Ca2+]i signaling in the collecting duct and contributes to urinary concentration. PLoS ONE, 2019, 14, e0226381.	2.5	16
13	Urinary concentrating defect in mice lacking Epac1 or Epac2. FASEB Journal, 2019, 33, 2156-2170.	0.5	7
14	Compromised regulation of the collecting duct ENaC activity in mice lacking AT _{1a} receptor. Journal of Cellular Physiology, 2018, 233, 7217-7225.	4.1	11
15	Dietary K+ and Clâ^' independently regulate basolateral conductance in principal and intercalated cells of the collecting duct. Pflugers Archiv European Journal of Physiology, 2018, 470, 339-353.	2.8	23
16	Deficient transient receptor potential vanilloid type 4 function contributes to compromised [Ca ²⁺] homeostasis in human autosomalâ€dominant polycystic kidney disease cells. FASEB Journal, 2018, 32, 4612-4623.	0.5	21
17	Distal tubule basolateral potassium channels. Current Opinion in Nephrology and Hypertension, 2018, 27, 373-378.	2.0	17
18	Increased susceptibility to hypertensive renal disease in spontaneously hypertensive rats due to a mutation in Stim1. FASEB Journal, 2018, 32, 716.20.	0.5	0

Олен Роснулуик

#	Article	IF	CITATIONS
19	Insulin and IGF-1 activate K _{ir} 4.1/5.1 channels in cortical collecting duct principal cells to control basolateral membrane voltage. American Journal of Physiology - Renal Physiology, 2016, 310, F311-F321.	2.7	35
20	New perspective of ClC-Kb/2 Clâ^' channel physiology in the distal renal tubule. American Journal of Physiology - Renal Physiology, 2016, 310, F923-F930.	2.7	24
21	The sodium chloride cotransporter (NCC) and epithelial sodium channel (ENaC) associate. Biochemical Journal, 2016, 473, 3237-3252.	3.7	37
22	Role of renal TRP channels in physiology and pathology. Seminars in Immunopathology, 2016, 38, 371-383.	6.1	36
23	PTH modulation of NCC activity regulates TRPV5 Ca ²⁺ reabsorption. American Journal of Physiology - Renal Physiology, 2016, 310, F144-F151.	2.7	18
24	Defective Store-Operated Calcium Entry Causes Partial Nephrogenic Diabetes Insipidus. Journal of the American Society of Nephrology: JASN, 2016, 27, 2035-2048.	6.1	32
25	Implementing Patch Clamp and Live Fluorescence Microscopy to Monitor Functional Properties of Freshly Isolated PKD Epithelium. Journal of Visualized Experiments, 2015, , .	0.3	10
26	Control of ENaC-Mediated Sodium Reabsorption in the Distal Nephron by Bradykinin. Vitamins and Hormones, 2015, 98, 137-154.	1.7	5
27	IGF-1 and insulin exert opposite actions on ClC-K2 activity in the cortical collecting ducts. American Journal of Physiology - Renal Physiology, 2015, 308, F39-F48.	2.7	18
28	Regulation of Renal TRPV4 Activity by Dietary Potassium Intake is Essential for The Maintenance of K + Homeostasis. FASEB Journal, 2015, 29, .	0.5	0
29	Emerging Role of the Calcium-Activated, Small Conductance, SK3 K+ Channel in Distal Tubule Function: Regulation by TRPV4. PLoS ONE, 2014, 9, e95149.	2.5	28
30	Direct regulation of ENaC by bradykinin in the distal nephron. Implications for renal sodium handling. Current Opinion in Nephrology and Hypertension, 2014, 23, 122-129.	2.0	24
31	Direct Activation of ENaC by Angiotensin II: Recent Advances and New Insights. Current Hypertension Reports, 2013, 15, 17-24.	3.5	61
32	Novel insights into TRPV4 function in the kidney. Pflugers Archiv European Journal of Physiology, 2013, 465, 177-186.	2.8	37
33	Ca2+ Imaging as a Tool to Assess TRP Channel Function in Murine Distal Nephrons. Methods in Molecular Biology, 2013, 998, 371-384.	0.9	16
34	Direct inhibition of basolateral K _{ir} 4.1/5.1 and K _{ir} 4.1 channels in the cortical collecting duct by dopamine. American Journal of Physiology - Renal Physiology, 2013, 305, F1277-F1287.	2.7	49
35	Chronic Angiotensin II Infusion Drives Extensive Aldosterone-Independent Epithelial Na ⁺ Channel Activation. Hypertension, 2013, 62, 1111-1122.	2.7	61
36	Discrete Control of TRPV4 Channel Function in the Distal Nephron by Protein Kinases A and C. Journal of Biological Chemistry, 2013, 288, 20306-20314.	3.4	44

Олен Роснулуик

#	Article	IF	CITATIONS
37	TRPV4 Dysfunction Promotes Renal Cystogenesis in Autosomal Recessive Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2013, 24, 604-616.	6.1	63
38	Recording Ion Channels in Isolated, Split-Opened Tubules. Methods in Molecular Biology, 2013, 998, 341-353.	0.9	24
39	Separate control of TRPV4 activity and trafficking in the distal nephron. FASEB Journal, 2013, 27, 912.4.	0.5	0
40	Dopamine inhibits basolateral potassium channels in the murine distal nephron. FASEB Journal, 2013, 27, 912.11.	0.5	0
41	Saltâ€dependent inhibition of the epithelial sodium channel (ENaC) by Bradykinin. FASEB Journal, 2013, 27, 911.5.	0.5	Ο
42	Angiotensin II Increases Activity of the Epithelial Na+ Channel (ENaC) in Distal Nephron Additively to Aldosterone. Journal of Biological Chemistry, 2012, 287, 660-671.	3.4	127
43	Salt-Dependent Inhibition of Epithelial Na ⁺ Channel–Mediated Sodium Reabsorption in the Aldosterone-Sensitive Distal Nephron by Bradykinin. Hypertension, 2012, 60, 1234-1241.	2.7	36
44	Function of Transient Receptor Potential Cation Channel Subfamily V Member 4 (TRPV4) as a Mechanical Transducer in Flow-sensitive Segments of Renal Collecting Duct System. Journal of Biological Chemistry, 2012, 287, 8782-8791.	3.4	87
45	Bradykinin acutely inhibits activity of the epithelial Na ⁺ channel in mammalian aldosterone-sensitive distal nephron. American Journal of Physiology - Renal Physiology, 2011, 300, F1105-F1115.	2.7	44
46	Purinergic Activation of Ca2+-Permeable TRPV4 Channels Is Essential for Mechano-Sensitivity in the Aldosterone-Sensitive Distal Nephron. PLoS ONE, 2011, 6, e22824.	2.5	40
47	TRPV4 channel activation is required for flowâ€dependent K + secretion/BK channel activation in mouse cortical collecting duct (CCD). FASEB Journal, 2011, 25, 1041.29.	0.5	1
48	Dietary Na ⁺ inhibits the open probability of the epithelial sodium channel in the kidney by enhancing apical P2Y ₂ â€receptor tone. FASEB Journal, 2010, 24, 2056-2065.	0.5	92
49	Purinergic Inhibition of ENaC Produces Aldosterone Escape. Journal of the American Society of Nephrology: JASN, 2010, 21, 1903-1911.	6.1	62
50	Intrinsic Voltage Dependence of the Epithelial Na+ Channel Is Masked by a Conserved Transmembrane Domain Tryptophan. Journal of Biological Chemistry, 2009, 284, 25512-25521.	3.4	10
51	Activation of the epithelial Na ⁺ channel in the collecting duct by vasopressin contributes to water reabsorption. American Journal of Physiology - Renal Physiology, 2009, 297, F1411-F1418.	2.7	72
52	Insight toward epithelial Na ⁺ channel mechanism revealed by the acidâ€sensing ion channel 1 structure. IUBMB Life, 2008, 60, 620-628.	3.4	89
53	Purinergic control of apical plasma membrane PI(4,5)P ₂ levels sets ENaC activity in principal cells. American Journal of Physiology - Renal Physiology, 2008, 294, F38-F46.	2.7	77
54	Paracrine Regulation of the Epithelial Na+ Channel in the Mammalian Collecting Duct by Purinergic P2Y2 Receptor Tone. Journal of Biological Chemistry, 2008, 283, 36599-36607.	3.4	119

Олен Роснулуик

#	Article	IF	CITATIONS
55	Acute Regulation of the Epithelial Na+ Channel by Phosphatidylinositide 3-OH Kinase Signaling in Native Collecting Duct Principal Cells. Journal of the American Society of Nephrology: JASN, 2007, 18, 1652-1661.	6.1	87
56	Quantifying RhoA Facilitated Trafficking of the Epithelial Na+ Channel toward the Plasma Membrane with Total Internal Reflection Fluorescence-Fluorescence Recovery after Photobleaching. Journal of Biological Chemistry, 2007, 282, 14576-14585.	3.4	48
57	Molecular Determinants of PI(4,5)P2 and PI(3,4,5)P3 Regulation of the Epithelial Na+ Channel. Journal of General Physiology, 2007, 130, 399-413.	1.9	73
58	Ion Channel Regulation by Ras, Rho, and Rab Small GTPases. Experimental Biology and Medicine, 2007, 232, 1258-1265.	2.4	55
59	Binding and direct activation of the epithelial Na+channel (ENaC) by phosphatidylinositides. Journal of Physiology, 2007, 580, 365-372.	2.9	50
60	Regulation of the epithelial Na+ channel (ENaC) by phosphatidylinositides. American Journal of Physiology - Renal Physiology, 2006, 290, F949-F957.	2.7	68
61	Rapid Translocation and Insertion of the Epithelial Na+ Channel in Response to RhoA Signaling. Journal of Biological Chemistry, 2006, 281, 26520-26527.	3.4	71
62	Identification of a Functional Phosphatidylinositol 3,4,5-Trisphosphate Binding Site in the Epithelial Na+ Channel. Journal of Biological Chemistry, 2005, 280, 37565-37571.	3.4	62