
Matthew R Nassar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4979840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Latent motives guide structure learning during adaptive social choice. Nature Human Behaviour, 2022, 6, 404-414.	6.2	5
2	Adaptive Learning through Temporal Dynamics of State Representation. Journal of Neuroscience, 2022, 42, 2524-2538.	1.7	9
3	All or nothing belief updating in patients with schizophrenia reduces precision and flexibility of beliefs. Brain, 2021, 144, 1013-1029.	3.7	30
4	Response-based outcome predictions and confidence regulate feedback processing and learning. ELife, 2021, 10, .	2.8	29
5	Noise Correlations for Faster and More Robust Learning. Journal of Neuroscience, 2021, 41, 6740-6752.	1.7	9
6	Dynamic Representation of the Subjective Value of Information. Journal of Neuroscience, 2021, 41, 8220-8232.	1.7	8
7	The computational challenge of social learning. Trends in Cognitive Sciences, 2021, 25, 1045-1057.	4.0	26
8	Adaptive learning is structure learning in time. Neuroscience and Biobehavioral Reviews, 2021, 128, 270-281.	2.9	20
9	Neural connectome prospectively encodes the risk of post-traumatic stress disorder (PTSD) symptom during the COVID-19 pandemic. Neurobiology of Stress, 2021, 15, 100378.	1.9	8
10	The stability flexibility tradeoff and the dark side of detail. Cognitive, Affective and Behavioral Neuroscience, 2021, 21, 607-623.	1.0	10
11	Age-related changes in the functional integrity of the phasic alerting system: a pupillometric investigation. Neurobiology of Aging, 2020, 91, 136-147.	1.5	6
12	Functional brain network reconfiguration during learning in a dynamic environment. Nature Communications, 2020, 11, 1682.	5.8	25
13	Dissociable forms of uncertainty-driven representational change across the human brain. Journal of Neuroscience, 2019, 39, 1713-18.	1.7	39
14	Individual Neurons in the Cingulate Cortex Encode Action Monitoring, Not Selection, during Adaptive Decision-Making. Journal of Neuroscience, 2019, 39, 6668-6683.	1.7	23
15	Positive reward prediction errors during decision-making strengthen memory encoding. Nature Human Behaviour, 2019, 3, 719-732.	6.2	72
16	Statistical context dictates the relationship between feedback-related EEG signals and learning. ELife, 2019, 8, .	2.8	53
17	Computational neuroscience across the lifespan: Promises and pitfalls. Developmental Cognitive Neuroscience, 2018, 33, 42-53.	1.9	22
18	Chunking as a rational strategy for lossy data compression in visual working memory Psychological Review. 2018, 125, 486-511.	2.7	67

MATTHEW R NASSAR

#	Article	IF	CITATIONS
19	A Control Theoretic Model of Adaptive Learning in Dynamic Environments. Journal of Cognitive Neuroscience, 2018, 30, 1405-1421.	1.1	16
20	Arousal-related adjustments of perceptual biases optimize perception in dynamic environments. Nature Human Behaviour, 2017, 1, .	6.2	67
21	Catecholaminergic Regulation of Learning Rate in a Dynamic Environment. PLoS Computational Biology, 2016, 12, e1005171.	1.5	74
22	What do we GANE with age?. Behavioral and Brain Sciences, 2016, 39, e218.	0.4	2
23	Age differences in learning emerge from an insufficient representation of uncertainty in older adults. Nature Communications, 2016, 7, 11609.	5.8	70
24	Taming the beast: extracting generalizable knowledge from computational models of cognition. Current Opinion in Behavioral Sciences, 2016, 11, 49-54.	2.0	56
25	The mitochondrial uncoupler <scp>DNP</scp> triggers brain cell <scp>mTOR</scp> signaling network reprogramming andÂ <scp>CREB</scp> pathway upâ€regulation. Journal of Neurochemistry, 2015, 134, 677-692.	2.1	53
26	Functionally Dissociable Influences on Learning Rate in a Dynamic Environment. Neuron, 2014, 84, 870-881.	3.8	216
27	A Healthy Fear of the Unknown: Perspectives on the Interpretation of Parameter Fits from Computational Models in Neuroscience. PLoS Computational Biology, 2013, 9, e1003015.	1.5	21
28	A Mixture of Delta-Rules Approximation to Bayesian Inference in Change-Point Problems. PLoS Computational Biology, 2013, 9, e1003150.	1.5	90
29	Rational regulation of learning dynamics by pupil-linked arousal systems. Nature Neuroscience, 2012, 15, 1040-1046.	7.1	570
30	An Approximately Bayesian Delta-Rule Model Explains the Dynamics of Belief Updating in a Changing Environment. Journal of Neuroscience, 2010, 30, 12366-12378.	1.7	381
31	Bayesian Online Learning of the Hazard Rate in Change-Point Problems. Neural Computation, 2010, 22, 2452-2476.	1.3	120
32	Neuroprotective actions of a histidine analogue in models of ischemic stroke. Journal of Neurochemistry, 2007, 101, 729-736.	2.1	62
33	Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radical Biology and Medicine, 2007, 42, 665-674.	1.3	513