
Nathan Dascal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4979783/publications.pdf Version: 2024-02-01

Νλτήλη Πλέςλι

#	Article	IF	CITATIONS
1	The Use of <i>Xenopus</i> Oocytes for the Study of Ion Channel. Critical Reviews in Biochemistry, 1987, 22, 317-387.	7.5	609
2	The Roles of the Subunits in the Function of the Calcium Channel. Science, 1991, 253, 1553-1557.	12.6	532
3	cAMP-Dependent Regulation of Cardiac L-Type Ca2+ Channels Requires Membrane Targeting of PKA and Phosphorylation of Channel Subunits. Neuron, 1997, 19, 185-196.	8.1	487
4	Atrial G protein-activated K+ channel: expression cloning and molecular properties Proceedings of the United States of America, 1993, 90, 10235-10239.	7.1	349
5	Signalling Via the G Protein-Activated K+ Channels. Cellular Signalling, 1997, 9, 551-573.	3.6	298
6	Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes. Nature, 1985, 313, 141-143.	27.8	255
7	Expression and modulation of voltage-gated calcium channels after RNA injection in Xenopus oocytes. Science, 1986, 231, 1147-1150.	12.6	174
8	Point Mutation in the HCN4 Cardiac Ion Channel Pore Affecting Synthesis, Trafficking, and Functional Expression Is Associated With Familial Asymptomatic Sinus Bradycardia. Circulation, 2007, 116, 463-470.	1.6	166
9	Movement of â€~gating charge' is coupled to ligand binding in a G-protein-coupled receptor. Nature, 2006, 444, 106-109.	27.8	157
10	Ion-channel regulation by G proteins. Trends in Endocrinology and Metabolism, 2001, 12, 391-398.	7.1	156
11	Xenopus oocyte resting potential, muscarinic responses and the role of calcium and guanosine 3',5'â€cyclic monophosphate Journal of Physiology, 1984, 352, 551-574.	2.9	152
12	Primary structure and functional expression of a cyclic nucleotidegated channel from rabbit aorta. FEBS Letters, 1993, 329, 134-138.	2.8	150
13	Gαi Controls the Gating of the G Protein-Activated K+ Channel, GIRK. Neuron, 2002, 33, 87-99.	8.1	149
14	Positive and Negative Coupling of the Metabotropic Glutamate Receptors to a G Protein–activated K+ Channel, GIRK, in Xenopus Oocytes. Journal of General Physiology, 1997, 109, 477-490.	1.9	144
15	Voltage clamping of Xenopus laevis oocytes utilizing agarose-cushion electrodes. Pflugers Archiv European Journal of Physiology, 1994, 426, 453-458.	2.8	140
16	Two calciumâ€activated chloride conductances in Xenopus laevis oocytes permeabilized with the ionophore A23187 Journal of Physiology, 1989, 408, 511-534.	2.9	123
17	The M2 Muscarinic G-protein-coupled Receptor Is Voltage-sensitive. Journal of Biological Chemistry, 2003, 278, 22482-22491.	3.4	119
18	Modulation of L-type Ca2+ Channels by Gβγ and Calmodulin via Interactions with N and C Termini of α1C. Journal of Biological Chemistry, 2000, 275, 39846-39854.	3.4	118

#	Article	IF	CITATIONS
19	Involvement of a GTP-binding protein in mediation of serotonin and acetylcholine responses in Xenopus oocytes injected with rat brain messenger RNA. Molecular Brain Research, 1986, 1, 201-209.	2.3	116
20	Inhibition of an inwardly rectifying K+ channel by G-protein α-subunits. Nature, 1996, 380, 624-627.	27.8	115
21	Activation of protein kinase C alters voltage dependence of a Na+ channel. Neuron, 1991, 6, 165-175.	8.1	110
22	Crucial Role of N Terminus in Function of Cardiac L-type Ca2+ Channel and Its Modulation by Protein Kinase C. Journal of Biological Chemistry, 1998, 273, 17901-17909.	3.4	102
23	Tissue-specific expression of high-voltage-activated dihydropyridine-sensitive L-type calcium channels. FEBS Journal, 1991, 200, 81-88.	0.2	94
24	Regulation of Cardiac L-Type Ca ²⁺ Channel Ca _V 1.2 Via the β-Adrenergic-cAMP-Protein Kinase A Pathway. Circulation Research, 2013, 113, 617-631.	4.5	92
25	Adenosine-induced slow ionic currents in the Xenopus oocyte. Nature, 1982, 298, 572-574.	27.8	84
26	Expression of an atrial G-protein-activated potassium channel in Xenopus oocytes Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 6596-6600.	7.1	80
27	Distribution and localization of a G protein-coupled inwardly rectifying K+ channel in the rat. FEBS Letters, 1994, 348, 139-144.	2.8	80
28	A potential site of functional modulation by protein kinase A in the cardiac Ca2+channelα1Csubunit. FEBS Letters, 1996, 384, 189-192.	2.8	75
29	Types of muscarinic response in oocytes. Life Sciences, 1980, 27, 1423-1428.	4.3	70
30	Modulation of cardiac Ca2+channels inXenopusoocytes by protein kinase C. FEBS Letters, 1992, 306, 113-118.	2.8	69
31	Phosphorylation by protein kinase A of RCK1 K+ channels expressed in Xenopus oocytes. Biochemistry, 1994, 33, 8786-8792.	2.5	67
32	SK4 Ca ²⁺ activated K ⁺ channel is a critical player in cardiac pacemaker derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1685-94.	7.1	67
33	Acetylcholine and phorbol esters inhibit potassium currents evoked by adenosine and cAMP in Xenopus oocytes Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 6001-6005.	7.1	64
34	Gαi1 and Gαi3 Differentially Interact with, and Regulate, the G Protein-activated K+ Channel. Journal of Biological Chemistry, 2004, 279, 17260-17268.	3.4	64
35	Mapping the Gβγ-binding Sites in GIRK1 and GIRK2 Subunits of the G Protein-activated K+ Channel. Journal of Biological Chemistry, 2003, 278, 29174-29183.	3.4	62
36	A Novel Mutation in the <i>HCN4</i> Gene Causes Symptomatic Sinus Bradycardia in Moroccan Jews. Journal of Cardiovascular Electrophysiology, 2010, 21, 1365-1372.	1.7	62

#	Article	IF	CITATIONS
37	Evidence for the existence of a cardiac specific isoform of the α1subunit of the voltage dependent calcium channel. FEBS Letters, 1989, 250, 509-514.	2.8	60
38	Early infantile epileptic encephalopathy associated with a high voltage gated calcium channelopathy. Journal of Medical Genetics, 2013, 50, 118-123.	3.2	60
39	The Roles of Gβγ and Cα in Gating and Regulation of GIRK Channels. International Review of Neurobiology, 2015, 123, 27-85.	2.0	59
40	Heterologous Facilitation of G Protein-Activated K+ Channels by β-Adrenergic Stimulation via Camp-Dependent Protein Kinase. Journal of General Physiology, 2000, 115, 547-558.	1.9	56
41	Protein kinase C modulates neurotransmitter responses in Xenopus oocytes injected with rat brain RNA. Molecular Brain Research, 1989, 5, 193-202.	2.3	55
42	Renin–aldosterone response, urinary Na/K ratio and growth in pseudohypoaldosteronism patients with mutations in epithelial sodium channel (ENaC) subunit genes. Journal of Steroid Biochemistry and Molecular Biology, 2008, 111, 268-274.	2.5	54
43	Coupling of the Muscarinic m2 Receptor to G Protein-activated K+ Channels via Gαz and a Receptor-Gαz Fusion Protein. Journal of Biological Chemistry, 2000, 275, 4166-4170.	3.4	53
44	GÎ2Î3-dependent and CÎ2Î3-independent Basal Activity of G Protein-activated K+ Channels. Journal of Biological Chemistry, 2005, 280, 16685-16694.	3.4	53
45	A Retinal-Specific Regulator of G-Protein Signaling Interacts with GÂo and Accelerates an Expressed Metabotropic Glutamate Receptor 6 Cascade. Journal of Neuroscience, 2004, 24, 5684-5693.	3.6	52
46	Modulation of vertebrate brain Na+ and K+ channels by subtypes of protein kinase C. FEBS Letters, 1990, 267, 25-28.	2.8	51
47	Divergent regulation of GIRK1 and GIRK2 subunits of the neuronal G protein gated K ⁺ channel by Gl± _i ^{GDP} and Gβγ. Journal of Physiology, 2009, 587, 3473-3491.	2.9	48
48	The N terminus of the Cardiac L-type Ca2+ Channel α1C Subunit. Journal of Biological Chemistry, 1999, 274, 31145-31149.	3.4	47
49	Acetylcholine promotes progesterone-induced maturation ofXenopus oocytes. The Journal of Experimental Zoology, 1984, 230, 131-135.	1.4	45
50	Gαi3primes the G protein-activated K+channels for activation by coexpressed Gβγ in intactXenopusoocytes. Journal of Physiology, 2007, 581, 17-32.	2.9	45
51	Na+ Promotes the Dissociation between GαGDP and Gβγ, Activating G Protein-gated K+ Channels. Journal of Biological Chemistry, 2003, 278, 3840-3845.	3.4	44
52	Specific block of calcium channel expression by a fragment of dihydropyridine receptor cDNA. Science, 1989, 243, 666-669.	12.6	43
53	A Novel Long N-terminal Isoform of Human L-type Ca2+Channel Is Up-regulated by Protein Kinase C. Journal of Biological Chemistry, 2002, 277, 3419-3423.	3.4	43
54	Inactivation of calcium-activated chloride conductance in Xenopus oocytes: roles of calcium and protein kinase C. Pflugers Archiv European Journal of Physiology, 1990, 416, 1-6.	2.8	41

#	Article	IF	CITATIONS
55	Expression of Exogenous Ion Channels and Neurotransmitter Receptors in RNA-Injected Xenopus Oocytes. , 1992, , 205-226.		41
56	Regulation of Maximal Open Probability Is a Separable Function of CavÎ ² Subunit in L-type Ca2+ Channel, Dependent on NH2 Terminus of α1C (Cav1.2α). Journal of General Physiology, 2006, 128, 15-36.	1.9	41
57	Gαi and Gβγ Jointly Regulate the Conformations of a Gβγ Effector, the Neuronal G Protein-activated K+ Channel (GIRK). Journal of Biological Chemistry, 2010, 285, 6179-6185.	3.4	40
58	Two Distinct Aspects of Coupling between Gαi Protein and G Protein-activated K+ Channel (GIRK) Revealed by Fluorescently Labeled Gαi3 Protein Subunits. Journal of Biological Chemistry, 2011, 286, 33223-33235.	3.4	39
59	CaBP1 Regulates Voltage-dependent Inactivation and Activation of CaV1.2 (L-type) Calcium Channels. Journal of Biological Chemistry, 2011, 286, 13945-13953.	3.4	38
60	Inhibition of function in Xenopus oocytes of the inwardly rectifying G-protein-activated atrial K channel (GIRK1) by overexpression of a membrane-attached form of the C-terminal tail Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 6758-6762.	7.1	36
61	ATP-evoked membrane responses inXenopus oocytes. Pflugers Archiv European Journal of Physiology, 1986, 406, 158-162.	2.8	34
62	The Role of a Voltage-Dependent Ca ²⁺ Channel Intracellular Linker: A Structure-Function Analysis. Journal of Neuroscience, 2012, 32, 7602-7613.	3.6	34
63	Competitive and Non-competitive Regulation of Calcium-dependent Inactivation in CaV1.2 L-type Ca2+ Channels by Calmodulin and Ca2+-binding Protein 1. Journal of Biological Chemistry, 2013, 288, 12680-12691.	3.4	34
64	ls a decrease in cyclic AMP a necessary and sufficient signal for maturation of amphibian oocytes?. Developmental Biology, 1988, 127, 25-32.	2.0	33
65	Modulation of aShakerpotassium A-channel by protein kinase C activation. FEBS Letters, 1991, 279, 256-260.	2.8	32
66	Molecular mechanism of protein kinase C modulation of sodium channel α-subunits expressed in Xenopus oocytes. FEBS Letters, 1991, 291, 341-344.	2.8	32
67	Heterologous expression of calcium channels. Journal of Membrane Biology, 1992, 126, 97-108.	2.1	30
68	Slow modal gating of single G proteinâ€activated K + channels expressed in Xenopus oocytes. Journal of Physiology, 2000, 524, 737-755.	2.9	30
69	Expression levels of RGS7 and RGS4 proteins determine the mode of regulation of the G protein-activated K+channel and control regulation of RGS7 by Gβ5. FEBS Letters, 2001, 492, 20-28.	2.8	29
70	An Inactivation Gate in the Selectivity Filter of KCNQ1 Potassium Channels. Biophysical Journal, 2007, 93, 4159-4172.	0.5	29
71	Dual regulation of G proteins and the G-protein–activated K ⁺ channels by lithium. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5018-5023.	7.1	29
72	Short-and long-term desensitization of serotonergic response in Xenopus oocytes injected with brain RNA: roles for inositol 1,4,5-trisphosphate and protein kinase C. Pflugers Archiv European Journal of Physiology, 1990, 416, 7-16.	2.8	28

#	Article	IF	CITATIONS
73	Truncated beta epithelial sodium channel (ENaC) subunits responsible for multi-system pseudohypoaldosteronism support partial activity of ENaC. Journal of Steroid Biochemistry and Molecular Biology, 2010, 119, 84-88.	2.5	28
74	Cyclic GMP mimics the muscarinic response in Xenopus oocytes: identity of ionic mechanisms Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 3052-3056.	7.1	27
75	Intracellular Na+inhibits voltage-dependent N-type Ca2+channels by a G protein βγ subunit-dependent mechanism. Journal of Physiology, 2004, 556, 121-134.	2.9	27
76	Recruitment of Gβγ controls the basal activity of Gâ€protein coupled inwardly rectifying potassium (GIRK) channels: crucial role of distal C terminus of GIRK1. Journal of Physiology, 2014, 592, 5373-5390.	2.9	26
77	N Terminus of Type 5 Adenylyl Cyclase Scaffolds Gs Heterotrimer. Molecular Pharmacology, 2009, 76, 1256-1264.	2.3	25
78	Level of expression controls modes of gating of a K+ channel. FEBS Letters, 1992, 302, 21-25.	2.8	24
79	A C-terminal peptide of the CIRK1 subunit directly blocks the G protein-activated K+channel (GIRK) expressed inXenopusoocytes. Journal of Physiology, 1997, 505, 13-22.	2.9	24
80	Characterization of the calmodulin-binding site in the N terminus of CaV1.2. Channels, 2009, 3, 337-342.	2.8	23
81	Identification of the roles of conserved charged residues in the extracellular domain of an epithelial sodium channel (ENaC) subunit by alanine mutagenesis. American Journal of Physiology - Renal Physiology, 2011, 300, F887-F897.	2.7	23
82	Evidence for the existence of RNA of Ca2+-channel α2/δ subunit in Xenopus oocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1137, 39-44.	4.1	22
83	Agonist-independent inactivation and agonist-induced desensitization of the G protein-activated K + channel (GIRK) in Xenopus oocytes. Pflugers Archiv European Journal of Physiology, 1998, 436, 56-68.	2.8	22
84	Voltage Clamp Recordings from Xenopus Oocytes. Current Protocols in Neuroscience, 2000, 10, Unit 6.12.	2.6	22
85	A Quantitative Model of the GIRK1/2 Channel Reveals That Its Basal and Evoked Activities Are Controlled by Unequal Stoichiometry of Gα and Gβγ. PLoS Computational Biology, 2015, 11, e1004598.	3.2	21
86	Coupling of GABAB receptor GABAB2 subunit to G proteins: evidence from Xenopus oocyte and baby hamster kidney cell expression system. American Journal of Physiology - Cell Physiology, 2006, 290, C200-C207.	4.6	20
87	Stargazin Modulates Neuronal Voltage-dependent Ca2+ Channel Cav2.2 by a Gβγ-dependent Mechanism. Journal of Biological Chemistry, 2010, 285, 20462-20471.	3.4	20
88	Anion-Sensitive Regions of L-Type CaV1.2 Calcium Channels Expressed in HEK293 Cells. PLoS ONE, 2010, 5, e8602.	2.5	20
89	Conserved charged residues at the surface and interface of epithelial sodium channel subunits–Âroles in cell surface expression and the sodium selfâ€inhibition response. FEBS Journal, 2014, 281, 2097-2111.	4.7	19
90	Further characterization of the slow muscarinic responses inXenopus oocytes. Pflugers Archiv European Journal of Physiology, 1987, 409, 512-520.	2.8	18

#	Article	IF	CITATIONS
91	Molecular mechanisms that control initiation and termination of physiological depolarization-evoked transmitter release. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4435-4440.	7.1	18
92	Modulation of the voltage-dependent sodium channel by agents affecting G-proteins: a study in Xenopus oocytes injected with brain RNA. Brain Research, 1989, 496, 197-203.	2.2	17
93	Analysis and functional characteristics of dihydropyridine-sensitive and -insensitive calcium channel proteins. Biochemical Pharmacology, 1990, 40, 1171-1178.	4.4	17
94	Serotonin and protein kinase C modulation of a rat brain inwardly rectifying K+ channel expressed inXenopus oocytes. Pflugers Archiv European Journal of Physiology, 1996, 431, 335-340.	2.8	17
95	Regulation of cardiac L-type Ca2+channel by coexpression of GαsinXenopusoocytes. FEBS Letters, 1999, 444, 78-84.	2.8	17
96	Modulation of Cardiac Ca2+ Channel by Gq-activating Neurotransmitters Reconstituted in Xenopus Oocytes. Journal of Biological Chemistry, 2004, 279, 12503-12510.	3.4	17
97	Kinetic Modeling of Na ⁺ -Induced, Gβγ-Dependent Activation of G Protein–Gated K+ Channels. Journal of Molecular Neuroscience, 2005, 25, 007-020.	2.3	17
98	Reconstitution of β-adrenergic regulation of Ca _V 1.2: Rad-dependent and Rad-independent protein kinase A mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
99	Imaging plasma membrane proteins in large membrane patches of Xenopus oocytes. Pflugers Archiv European Journal of Physiology, 2000, 440, 627-633.	2.8	16
100	Molecular Aspects of Modulation of L-type Calcium Channels by Protein Kinase C. Current Molecular Pharmacology, 2015, 8, 43-53.	1.5	16
101	Protein kinase C enhances plasma membrane expression of cardiac L-type calcium channel, Ca _V 1.2. Channels, 2017, 11, 604-615.	2.8	16
102	Protein kinase A regulates Câ€ŧerminally truncated Ca _V 1.2 in <i>Xenopus</i> oocytes: roles of N―and Câ€ŧermini of the α _{1C} subunit. Journal of Physiology, 2017, 595, 3181-3202.	2.9	15
103	The response to vagusstoff. Nature, 1993, 364, 758-759.	27.8	14
104	Modal behavior of the Kv1.1 channel conferred by the Kv \hat{l}^2 1.1 subunit and its regulation by dephosphorylation of Kv1.1. Pflugers Archiv European Journal of Physiology, 1999, 439, 18-26.	2.8	13
105	Ahnak1 interaction is affected by phosphorylation of Ser-296 on Cavβ2. Biochemical and Biophysical Research Communications, 2012, 421, 184-189.	2.1	13
106	Modulation of distinct isoforms of L-type calcium channels by Gq-coupled receptors in Xenopus oocytes. Channels, 2012, 6, 426-437.	2.8	12
107	Interactions between N and C termini of α _{1C} subunit regulate inactivation of Ca _V 1.2 L-type Ca ²⁺ channel. Channels, 2016, 10, 55-68.	2.8	12
108	Collision coupling in the GABA B receptor–G protein–GIRK signaling cascade. FEBS Letters, 2017, 591, 2816-2825.	2.8	12

#	Article	IF	CITATIONS
109	Mutual action by GÎ ³ and GÎ ² for optimal activation of GIRK channels in a channel subunit-specific manner. Scientific Reports, 2019, 9, 508.	3.3	11
110	Andersen–Tawil Syndrome Is Associated With Impaired PIP2 Regulation of the Potassium Channel Kir2.1. Frontiers in Pharmacology, 2020, 11, 672.	3.5	11
111	A novel small-molecule selective activator of homomeric GIRK4 channels. Journal of Biological Chemistry, 2022, 298, 102009.	3.4	11
112	Dissociation of acetylcholine- and cyclic GMP-induced currents inXenopu oocytes. Pflugers Archiv European Journal of Physiology, 1987, 409, 521-527.	2.8	10
113	Expression of mRNA Encoding Voltage-Dependent Ca Channels in Xenopus Oocytes: Annals of the New York Academy of Sciences, 1989, 560, 174-182.	3.8	10
114	[25] Regulation of intracellular calcium activity in Xenopus oocytes. Methods in Enzymology, 1992, 207, 381-390.	1.0	9
115	Recording of voltage and Ca2+-dependent currents in Xenopus oocytes using an intracellular perfusion method. Journal of Neuroscience Methods, 1991, 39, 29-38.	2.5	8
116	Ca _V 1.2 I-II linker structure and Timothy syndrome. Channels, 2012, 6, 468-472.	2.8	8
117	Amplitude Histogram-Based Method of Analysis of Patch Clamp Recordings that Involve Extreme Changes in Channel Activity Levels. Journal of Molecular Neuroscience, 2009, 37, 201-211.	2.3	7
118	Molecular basis of the facilitation of the heterooligomeric GIRK1/GIRK4 complex by cAMP dependent protein kinase. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1214-1221.	2.6	7
119	Interaction between injected Ca2+and intracellular Ca2+stores inXenopusoocytes. FEBS Letters, 1990, 267, 22-24.	2.8	6
120	Divalent cations and transmitter release at low concentration of tetrodotoxin. Biophysical Journal, 1981, 35, 573-586.	0.5	5
121	Cholinergic modulation of progesterone-induced maturation ofXenopus oocytes in vitro. Gamete Research, 1985, 12, 171-181.	1.7	5
122	Characterization of the Calmodulin-Binding Site in the N Terminus of Cav1.2. Biophysical Journal, 2010, 98, 518a.	0.5	4
123	Antiepileptic Drug Ethosuximide May Regulate Absence Seizures Through Different Ion Channels. Biophysical Journal, 2020, 118, 588a.	0.5	4
124	Encephalopathy-causing mutations in Gβ1 (GNB1) alter regulation of neuronal GIRK channels. IScience, 2021, 24, 103018.	4.1	4
125	A revised mechanism of action of hyperaldosteronismâ€linked mutations in cytosolic domains of GIRK4 (KCNJ5). Journal of Physiology, 2022, 600, 1419-1437.	2.9	4
126	Expression of Voltage-Dependent Ca Channels from Skeletal Muscle in Xenopus Oocytes. Annals of the New York Academy of Sciences, 1989, 560, 183-184.	3.8	3

#	Article	IF	CITATIONS
127	[21] Intracellular perfusion of Xenopus oocytes. Methods in Enzymology, 1992, 207, 345-352.	1.0	3
128	Expression Cloning of KCRF, a Potassium Channel Regulatory Factor. Biochemical and Biophysical Research Communications, 2000, 274, 852-858.	2.1	3
129	G protein-activated K+channels: a reporter for rapid activation of G proteins by lysophosphatidic acid inXenopusoocytes. FEBS Letters, 2004, 564, 157-160.	2.8	3
130	A Collision Coupling Model Governs the Activation of Neuronal GIRK1/2 Channels by Muscarinic-2 Receptors. Frontiers in Pharmacology, 2020, 11, 1216.	3.5	3
131	Further characterization of regulation of Ca _V 2.2 by Stargazin. Channels, 2010, 4, 351-354.	2.8	2
132	Lithium reduces the span of G proteinâ€activated K ⁺ (<scp>GIRK</scp>) channel inhibition in hippocampal neurons. Bipolar Disorders, 2017, 19, 568-574.	1.9	2
133	A selectivity filter mutation provides insights into gating regulation of a K+ channel. Communications Biology, 2022, 5, 345.	4.4	2
134	Ggamma Assists Gbeta to Activate GIRK1 by Relaxing Inhibitory Constraint. Biophysical Journal, 2018, 114, 377a-378a.	0.5	1
135	Presynaptic effects of midgut extract from larvae of the oriental hornet (Vespa orientalis). Toxicon, 1980, 18, 339-342.	1.6	0
136	Diverse Regulation of the Neuronal G-Protein Gated K+ Channel (GIRK), GIRK1 and GIRK2 by Gα and Gβγ. Biophysical Journal, 2009, 96, 464a.	0.5	0
137	Both "Constitutively-active―and "Inactive―Gαi3 Mutants Interact with GIRK1/2 Heterotetramer. Biophysical Journal, 2009, 96, 464a.	O.5	О
138	The Human Muscarinic Receptor Couples to Gα13 Via Catalytic Collision. Biophysical Journal, 2010, 98, 291a.	0.5	0
139	Mathematical Model of Basal and Agonist-Dependent GIRK Channel Activity. Biophysical Journal, 2010, 98, 495a.	0.5	0
140	CaBP1 Regulates Both Ca and Ba currents through Ca(v)1.2 (L-type) Calcium Channels. Biophysical Journal, 2010, 98, 693a.	0.5	0
141	Deficient Regulation of Gbetagamma Effectors by Fluorescently Labeled Galpha i3 Subunits Reveals Distinct Aspects of Coupling to GIRK and Cav2.2 Channels. Biophysical Journal, 2011, 100, 258a.	0.5	0
142	Preferential Association with Gβγ Over Gα Governs the Activity of a G Protein-Activated K+ Channel. Biophysical Journal, 2012, 102, 538a.	0.5	0
143	CaBP1 and Calmodulin Compete in Regulating Calcium-Dependent Inactivation of CaV1.2. Biophysical Journal, 2012, 102, 125a.	0.5	0
144	Subunit Composition Determines Gβγ Activation of Single Girk Channels. Biophysical Journal, 2014, 106, 543a.	0.5	0

#	Article	IF	CITATIONS
145	Dual Regulation of G Proteins and the G Protein-Activated Potassium Channels (GIRK) by Lithium. Biophysical Journal, 2014, 106, 433a.	0.5	0
146	Direct Interaction Between N and C Termini of α1C Subunit of CaV1.2 L-Type Calcium Channel. Biophysical Journal, 2016, 110, 443a.	0.5	0
147	GIRK4 Mutations R52H and E246K Impair Channel Gating but not Inward Rectification. Biophysical Journal, 2017, 112, 173a.	0.5	0
148	Cellular and Functional Defects in Aldosteronism-linked Cytosolic Domain Mutations in GIRK4 (KCNJ5). Biophysical Journal, 2020, 118, 117a.	0.5	0
149	Gβγ Activates GIRK2 with Low-Micromolar Affinity with Distinct Activation Pattern Compared to GIRK1/2. Biophysical Journal, 2020, 118, 270a.	0.5	0