Jose M Hidalgo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4979650/publications.pdf

Version: 2024-02-01

623188 395343 51 1,126 14 33 citations g-index h-index papers 54 54 54 1672 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polypropylene and rendering fat degrading to value-added chemicals by direct liquefaction and fast-pyrolysis. Biomass Conversion and Biorefinery, 2024, 14, 1027-1036.	2.9	O
2	Phonolite Material as Catalyst Support for the Hydrotreatment of Gas Oil and Vegetable Oil Type Feedstocks. Materials, 2022, 15, 386.	1.3	1
3	Direct Polypropylene and Polyethylene Liquefaction in CO2 and N2 Atmospheres Using MgO Light and CaO as Catalysts. Materials, 2022, 15, 844.	1.3	1
4	Comparative Study of Light Cycle Oil and Naphthalene as an Adequate Additive to Improve the Stability of Marine Fuels. ACS Omega, 2022, 7, 2127-2136.	1.6	10
5	Animal fats as a suitable feedstock for co-processing with atmospheric gas oil. Sustainable Energy and Fuels, 2021, 5, 4955-4964.	2.5	7
6	Rendering Fat and Heavy Fischer-Tropsch Waxes Mixtures (0–100%) Fast Pyrolysis Tests for the Production of Ethylene and Propylene. Processes, 2021, 9, 367.	1.3	1
7	Mechanochemical Synthesis of Nickel-Modified Metal–Organic Frameworks for Reduction Reactions. Catalysts, 2021, 11, 526.	1.6	7
8	Mesityl Oxide Reduction by Using Acid-Modified Phonolite Supported NiW, NiMo, and CoMo Catalysts. Catalysts, 2021, 11, 1101.	1.6	4
9	Hydrocracking of Heavy Fischer–Tropsch Wax Distillation Residues and Its Blends with Vacuum Gas Oil Using Phonolite-Based Catalysts. Molecules, 2021, 26, 7172.	1.7	6
10	Cleaner Fuel Production via Co-Processing of Vacuum Gas Oil with Rapeseed Oil Using a Novel NiW/Acid-Modified Phonolite Catalyst. Energies, 2021, 14, 8497.	1.6	3
11	Near-infrared spectroscopy to determine cold-flow improver concentrations in diesel fuel. Infrared Physics and Technology, 2020, 110, 103445.	1.3	6
12	Raman Spectroscopy as Molybdenum and Tungsten Content Analysis Tool for Mesoporous Silica and Beta Zeolite Catalysts. Molecules, 2020, 25, 4918.	1.7	5
13	Converting brown coal to synthetic liquid fuels through direct coal liquefaction technology: <scp>Technoâ€economic</scp> evaluation. International Journal of Energy Research, 2020, 44, 11827-11839.	2.2	8
14	Oxalic Acid as a Hydrogen Donor for the Hydrodesulfurization of Gas Oil and Deoxygenation of Rapeseed Oil Using Phonolite-Based Catalysts. Molecules, 2020, 25, 3732.	1.7	6
15	Highly Active Catalysts for the Dehydration of Isopropanol. Catalysts, 2020, 10, 719.	1.6	6
16	Coal and waste direct liquefaction, using glycerol, polyethylene waste and waste tyres pyrolysis oil. Optimisation of liquids yield by response surface methodology. Journal of Cleaner Production, 2020, 255, 120192.	4.6	15
17	Oxalic acid-mediated catalytic transfer hydrodeoxygenation of waste cooking oil. Molecular Catalysis, 2020, 491, 110973.	1.0	5
18	Hydrodeoxygenation and pyrolysis of free fatty acids obtained from waste rendering fat. Ecletica Quimica, 2020, 45, 28-36.	0.2	2

#	Article	IF	CITATIONS
19	Near-infrared spectroscopy as a rapid tool for water content analysis in the partial oxidation of ethanol. Spectroscopy Letters, 2019, 52, 533-540.	0.5	2
20	Coâ€processing of Waste Cooking Oil and Light Cycle Oil with NiW/(Pseudoboehmite + SBAâ€15) Catalyst. Chemical Engineering and Technology, 2019, 42, 512-517.	0.9	9
21	Performance and Emission Quality Assessment in a Diesel Engine of Straight Castor and Sunflower Vegetable Oils, in Diesel/Gasoline/Oil Triple Blends. Energies, 2019, 12, 2181.	1.6	13
22	Rapid Models for Predicting the Lowâ€Temperature Behavior of Diesel. Chemical Engineering and Technology, 2019, 42, 735-743.	0.9	11
23	Synthesis, Performance and Emission Quality Assessment of Ecodiesel from Castor Oil in Diesel/Biofuel/Alcohol Triple Blends in a Diesel Engine. Catalysts, 2019, 9, 40.	1.6	27
24	Acid-modified phonolite and foamed zeolite as supports for NiW catalysts for deoxygenation of waste rendering fat. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 773-793.	0.8	14
25	Catalytic hydrocracking of vacuum residue and waste cooking oil mixtures. Monatshefte F $\tilde{A}^{1}\!\!/\!4$ r Chemie, 2018, 149, 1167-1177.	0.9	4
26	RGB histograms as a reliable tool for the evaluation of fuel oils stability. Fuel, 2018, 216, 16-22.	3.4	6
27	VOx/Zr–SBA-15 catalysts for selective oxidation of ethanol to acetaldehyde. Chemical Papers, 2018, 72, 937-946.	1.0	6
28	Partial Oxidation of Ethanol Using VOx/SBA-15 and VOx/Fumed Silica Catalysts in a Bench-scale Stainless Steel Reactor. Periodica Polytechnica: Chemical Engineering, 2018, 62, 345-350.	0.5	2
29	The effect of vanadium content and speciation on the activity of VOx/ZrO2 catalysts in the conversion of ethanol to acetaldehyde. Applied Catalysis A: General, 2018, 564, 208-217.	2.2	16
30	Direct primary brown coal liquefaction via non-catalytic and catalytic co-processing with model, waste and petroleum-derived hydrogen donors. Fuel, 2018, 234, 364-370.	3.4	22
31	Catalytic conversion of furfural-acetone condensation products into bio-derived C8 linear alcohols over Ni Cu/Al-SBA-15. Catalysis Communications, 2018, 114, 42-45.	1.6	9
32	Partial oxidation of ethanol over ZrO2-supported vanadium catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2017, 121, 161-173.	0.8	3
33	Conversion of ethanol to acetaldehyde over VOX-SiO2 catalysts: the effects of support texture and vanadium speciation. Reaction Kinetics, Mechanisms and Catalysis, 2017, 121, 353-369.	0.8	15
34	Effect of waste tires addition on a low-temperature hydrovisbreaking process of vacuum residue. Chemical Papers, 2017, 71, 1175-1182.	1.0	5
35	Cold Plasma and Acid Treatment Modification Effects on Phonolite. Acta Chimica Slovenica, 2017, 64, 598-602.	0.2	8
36	(V)/Hydrotalcite, (V)/Al2O3, (V)/TiO2 and (V)/SBA-15 catalysts for the partial oxidation of ethanol to acetaldehyde. Journal of Molecular Catalysis A, 2016, 420, 178-189.	4.8	27

#	Article	IF	CITATIONS
37	Impact of dopant metal ions in the framework of parent zirconia on the n -heptane isomerization activity of the Pt/WO 3 -ZrO 2 catalysts. Journal of Molecular Catalysis A, 2016, 420, 107-114.	4.8	17
38	Continuous-Flow Hydroisomerization of C5–C7 Alkanes Using Mechanochemically Synthesized Supported Pt and Pd–SBA-15 Materials. Journal of Flow Chemistry, 2015, 5, 11-16.	1.2	5
39	From laboratory catalysts to a new prototype: a novel real candidate for the isomerization of C5–C6 paraffins. RSC Advances, 2015, 5, 56625-56628.	1.7	10
40	Hydrovisbreaking of vacuum residue from Russian Export Blend: influence of brown coal, light cycle oil, or naphtha addition. Chemical Papers, 2015, 69, .	1.0	6
41	Tailoring of the structure of Pt/WO3–ZrO2 catalyst for high activity in skeletal isomerization of C5–C6 paraffins under industrially relevant conditions. Research on Chemical Intermediates, 2015, 41, 9425-9437.	1.3	4
42	Mechanistic insights into the hydroconversion of cinnamaldehyde using mechanochemically-synthesized Pd/Al-SBA-15 catalysts. Green Chemistry, 2015, 17, 565-572.	4.6	20
43	Current uses and trends in catalytic isomerization, alkylation and etherification processes to improve gasoline quality. Open Chemistry, 2014, 12, 1-13.	1.0	25
44	Isomerization of C5–C7 paraffins over a Pt/WO3–ZrO2 catalyst using industrial feedstock. Monatshefte FÃ⅓r Chemie, 2014, 145, 1407-1416.	0.9	6
45	A comprehensive study of reaction parameters in the enzymatic production of novel biofuels integrating glycerol into their composition. Bioresource Technology, 2010, 101, 6657-6662.	4.8	34
46	Sustainable preparation of a novel glycerol-free biofuel by using pig pancreatic lipase: Partial 1,3-regiospecific alcoholysis of sunflower oil. Process Biochemistry, 2009, 44, 334-342.	1.8	78
47	Efficient hydrogenation of alkenes using a highly active and reusable immobilised Ru complex on AlPO4. Journal of Molecular Catalysis A, 2009, 308, 41-45.	4.8	23
48	Preparation of Mesoporous Organically Modified Titanium Materials and their Activity in the Oxidation of Cyclohexene. Catalysis Letters, 2008, 126, 179-187.	1.4	8
49	Microwave oxidation of alkenes and alcohols using highly active and stable mesoporous organotitanium silicates. Journal of Molecular Catalysis A, 2008, 293, 17-24.	4.8	23
50	Biofuels: a technological perspective. Energy and Environmental Science, 2008, 1, 542.	15.6	521
51	Influence of the acid–base properties in Si-MCM-41 and B-MCM-41 mesoporous materials on the activity and selectivity of É>-caprolactam synthesis. Applied Catalysis A: General, 2006, 299, 224-234.	2.2	48