George Kakavelakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4978956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-powered, flexible and room temperature operated solution processed hybrid metal halide p-type sensing element for efficient hydrogen detection. JPhys Materials, 2020, 3, 014010.	4.2	17
2	Metal Halide Perovskites for Highâ€Energy Radiation Detection. Advanced Science, 2020, 7, 2002098.	11.2	126
3	2D Transition Metal Dichalcogenides for Solution-Processed Organic and Perovskite Solar Cells. , 2019, , 203-239.		7
4	Efficient and environmental-friendly perovskite solar cells via embedding plasmonic nanoparticles: an optical simulation study on realistic device architectures. Optics Express, 2019, 27, 31144.	3.4	28
5	Renaissance of graphene-related materials in photovoltaics due to the emergence of metal halide perovskite solar cells. Energy and Environmental Science, 2018, 11, 1030-1061.	30.8	56
6	Extending the Continuous Operating Lifetime of Perovskite Solar Cells with a Molybdenum Disulfide Hole Extraction Interlayer. Advanced Energy Materials, 2018, 8, 1702287.	19.5	121
7	Grapheneâ€Based Inverted Planar Perovskite Solar Cells: Advancements, Fundamental Challenges, and Prospects. Chemistry - an Asian Journal, 2018, 13, 240-249.	3.3	16
8	Solution Processed CH ₃ NH ₃ PbI _{3–<i>x</i>} Cl _{<i>x</i>} Perovskite Based Self-Powered Ozone Sensing Element Operated at Room Temperature. ACS Sensors, 2018, 3, 135-142.	7.8	96
9	Effects of alkyl side chains positioning and presence of fused aromatic units in the backbone of lowâ€bandgap diketopyrrolopyrrole copolymers on the optoelectronic properties of organic solar cells. Journal of Polymer Science Part A, 2018, 56, 138-146.	2.3	9
10	Improved Charge Carrier Dynamics of CH ₃ NH ₃ PbI ₃ Perovskite Films Synthesized by Means of Laser-Assisted Crystallization. ACS Applied Energy Materials, 2018, 1, 5101-5111.	5.1	31
11	Stability of organic solar cells with PCDTBT donor polymer: An interlaboratory study. Journal of Materials Research, 2018, 33, 1909-1924.	2.6	17
12	2D Materials Beyond Graphene for Metal Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800339.	3.7	32
13	Improving stability of organic devices: a time/space resolved structural monitoring approach applied to plasmonic photovoltaics. Solar Energy Materials and Solar Cells, 2017, 159, 617-624.	6.2	20
14	Efficiency and stability enhancement of inverted perovskite solar cells via the addition of metal nanoparticles in the hole transport layer. RSC Advances, 2017, 7, 12998-13002.	3.6	37
15	Size-Tuning of WSe ₂ Flakes for High Efficiency Inverted Organic Solar Cells. ACS Nano, 2017, 11, 3517-3531.	14.6	90
16	Graphene Interface Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50 cm ² Active Area. ACS Energy Letters, 2017, 2, 279-287.	17.4	196
17	Efficient and Highly Air Stable Planar Inverted Perovskite Solar Cells with Reduced Graphene Oxide Doped PCBM Electron Transporting Layer. Advanced Energy Materials, 2017, 7, 1602120.	19.5	188
18	Recent advances in plasmonic metal and rare-earth-element upconversion nanoparticle doped perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 21604-21624.	10.3	86

#	Article	IF	CITATIONS
19	Ternary solution-processed organic solar cells incorporating 2D materials. 2D Materials, 2017, 4, 042005.	4.4	36
20	Improved Carrier Transport in Perovskite Solar Cells Probed by Femtosecond Transient Absorption Spectroscopy. ACS Applied Materials & amp; Interfaces, 2017, 9, 43910-43919.	8.0	90
21	Efficiency and Stability Enhancement in Perovskite Solar Cells by Inserting Lithiumâ€Neutralized Graphene Oxide as Electron Transporting Layer. Advanced Functional Materials, 2016, 26, 2686-2694.	14.9	180
22	Photovoltaic Devices: Plasmonic Backscattering Effect in Highâ€Efficient Organic Photovoltaic Devices (Adv. Energy Mater. 2/2016). Advanced Energy Materials, 2016, 6, .	19.5	0
23	Plasmonic Backscattering Effect in Highâ€Efficient Organic Photovoltaic Devices. Advanced Energy Materials, 2016, 6, 1501640.	19.5	43
24	Solution processed reduced graphene oxide electrodes for organic photovoltaics. Nanoscale Horizons, 2016, 1, 375-382.	8.0	43
25	Highly efficient organic photovoltaic devices utilizing work-function tuned graphene oxide derivatives as the anode and cathode charge extraction layers. Journal of Materials Chemistry A, 2016, 4, 1612-1623.	10.3	74
26	Stability enhancement of organic photovoltaic devices utilizing partially reduced graphene oxide as the hole transport layer: nanoscale insight into structural/interfacial properties and aging effects. RSC Advances, 2015, 5, 106930-106940.	3.6	15
27	Reduced Graphene Oxide Micromesh Electrodes for Large Area, Flexible, Organic Photovoltaic Devices. Advanced Functional Materials, 2015, 25, 2213-2221.	14.9	118
28	Enhanced Stability of Aluminum Nanoparticle-Doped Organic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 17756-17764.	8.0	41
29	Photovoltaics: Reduced Graphene Oxide Micromesh Electrodes for Large Area, Flexible, Organic Photovoltaic Devices (Adv. Funct. Mater. 15/2015). Advanced Functional Materials, 2015, 25, 2206-2206.	14.9	4
30	Plasmonic Bulk Heterojunction Solar Cells: The Role of Nanoparticle Ligand Coating. ACS Photonics, 2015, 2, 714-723.	6.6	51
31	Efficient ternary organic photovoltaics incorporating a graphene-based porphyrin molecule as a universal electron cascade material. Nanoscale, 2015, 7, 17827-17835.	5.6	42
32	Organic Solar Cells: Photochemical Synthesis of Solutionâ€Processable Graphene Derivatives with Tunable Bandgaps for Organic Solar Cells (Advanced Optical Materials 5/2015). Advanced Optical Materials, 2015, 3, 596-596.	7.3	1
33	Efficiency enhancement of organic photovoltaic devices by embedding uncapped Al nanoparticles in the hole transport layer. RSC Advances, 2015, 5, 71704-71708.	3.6	17
34	Photochemical Synthesis of Solutionâ€Processable Graphene Derivatives with Tunable Bandgaps for Organic Solar Cells. Advanced Optical Materials, 2015, 3, 658-666.	7.3	41
35	Synergetic plasmonic effect of Al and Au nanoparticles for efficiency enhancement of air processed organic photovoltaic devices. Chemical Communications, 2014, 50, 5285-5287.	4.1	43
36	Enhancement of the Efficiency and Stability of Organic Photovoltaic Devices via the Addition of a Lithium-Neutralized Graphene Oxide Electron-Transporting Layer. Chemistry of Materials, 2014, 26, 5988-5993.	6.7	71

#	Article	IF	CITATIONS
37	Aluminum nanoparticles for efficient and stable organic photovoltaics. RSC Advances, 2013, 3, 16288.	3.6	38