
Maziar Janghorban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4978920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin-Walled Structures, 2018, 129, 251-264.	2.7	157
2	Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets. International Journal of Mechanical Sciences, 2019, 156, 94-105.	3.6	107
3	Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions. Engineering With Computers, 2019, 35, 1297-1316.	3.5	103
4	Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory. Composites Part B: Engineering, 2020, 182, 107622.	5.9	94
5	On guided wave propagation in fully clamped porous functionally graded nanoplates. Acta Astronautica, 2018, 143, 380-390.	1.7	89
6	Resonance behavior of FG rectangular micro/nano plate based on nonlocal elasticity theory and strain gradient theory with one gradient constant. Composite Structures, 2014, 111, 349-353.	3.1	84
7	Free vibration analysis of functionally graded carbon nanotubes with variable thickness by differential quadrature method. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1602-1604.	1.3	73
8	Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory. Mechanics of Advanced Materials and Structures, 2018, 25, 1047-1057.	1.5	67
9	Influence of homogenization schemes on vibration of functionally graded curved microbeams. Composite Structures, 2019, 216, 67-79.	3.1	66
10	Thermal buckling analysis of functionally graded rectangular nanoplates based on nonlocal third-order shear deformation theory. Aerospace Science and Technology, 2015, 41, 7-15.	2.5	65
11	On the dynamics of porous nanotubes with variable material properties and variable thickness. International Journal of Engineering Science, 2019, 136, 53-66.	2.7	61
12	Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment. Materials Research Express, 2017, 4, 085013.	0.8	56
13	On the resonance of functionally graded nanoplates using bi-Helmholtz nonlocal strain gradient theory. International Journal of Engineering Science, 2019, 144, 103143.	2.7	56
14	On the dynamics of porous doubly-curved nanoshells. International Journal of Engineering Science, 2019, 143, 39-55.	2.7	56
15	A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates. Aerospace Science and Technology, 2018, 82-83, 499-512.	2.5	55
16	Static analysis of functionally graded anisotropic nanoplates using nonlocal strain gradient theory. Composite Structures, 2019, 227, 111249.	3.1	52
17	Wave dispersion of mounted graphene with initial stress. Thin-Walled Structures, 2018, 122, 102-111.	2.7	51
18	Bending and shearing responses for dynamic analysis of single-layer graphene sheets under moving load. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 3849-3861.	0.8	45

Maziar Janghorban

#	Article	IF	CITATIONS
19	On pre-stressed functionally graded anisotropic nanoshell in magnetic field. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	0.8	45
20	On the mechanics of functionally graded nanoshells. International Journal of Engineering Science, 2020, 153, 103309.	2.7	43
21	Nonlocal Buckling Analysis of Composite Curved Beams Reinforced with Functionally Graded Carbon Nanotubes. Molecules, 2019, 24, 2750.	1.7	41
22	A new size-dependent shear deformation theory for free vibration analysis of functionally graded/anisotropic nanobeams. Thin-Walled Structures, 2019, 143, 106227.	2.7	40
23	Wave Propagation of Porous Nanoshells. Nanomaterials, 2019, 9, 22.	1.9	40
24	On the dynamics of nanoshells. International Journal of Engineering Science, 2021, 158, 103431.	2.7	37
25	Effect of magnetic field on the wave propagation in nanoplates based on strain gradient theory with one parameter and two-variable refined plate theory. Modern Physics Letters B, 2016, 30, 1650421.	1.0	33
26	Static analysis of rectangular nanoplates using trigonometric shear deformation theory based on nonlocal elasticity theory. Beilstein Journal of Nanotechnology, 2013, 4, 968-973.	1.5	31
27	Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 287-301.	1.1	31
28	Wave propagation in functionally graded nanocomposites reinforced with carbon nanotubes based on second-order shear deformation theory. Mechanics of Advanced Materials and Structures, 2017, 24, 458-468.	1.5	30
29	On the stress analysis of anisotropic curved panels. International Journal of Engineering Science, 2022, 172, 103625.	2.7	28
30	Free vibration analysis of rectangular nanoplates based on two-variable refined plate theory using a new strain gradient elasticity theory. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37, 313-324.	0.8	27
31	Free vibration of thick functionally graded carbon nanotube-reinforced rectangular composite plates based on three-dimensional elasticity theory via differential quadrature method. Advanced Composite Materials, 2015, 24, 439-450.	1.0	26
32	Analysis of functionally graded doubly-curved shells with different materials via higher order shear deformation theory. Composite Structures, 2020, 251, 112645.	3.1	25
33	Novel study on functionally graded anisotropic doubly curved nanoshells. European Physical Journal Plus, 2020, 135, 1.	1.2	23
34	Two different types of differential quadrature methods for static analysis of microbeams based on nonlocal thermal elasticity theory in thermal environment. Archive of Applied Mechanics, 2012, 82, 669-675.	1.2	22
35	A new model for wave propagation in functionally graded anisotropic doubly-curved shells. Composite Structures, 2018, 190, 91-111.	3.1	22
36	Dynamic analysis of isotropic nanoplates subjected to moving load using state-space method based on nonlocal second order plate theory. Journal of Mechanical Science and Technology, 2015, 29, 2423-2426.	0.7	21

Maziar Janghorban

#	Article	IF	CITATIONS
37	Elastic guided waves in fully-clamped functionally graded carbon nanotube-reinforced composite plates. Materials Research Express, 2019, 6, 0950a9.	0.8	20
38	Forced Vibration Analysis of Functionally Graded Anisotropic Nanoplates Resting on Winkler/Pasternak-Foundation. Computers, Materials and Continua, 2020, 62, 607-629.	1.5	19
39	Forced vibration analysis of anisotropic curved panels via a quasi-3D model in orthogonal curvilinear coordinate. Thin-Walled Structures, 2022, 175, 109254.	2.7	19
40	Free Vibration Analysis of Triclinic Nanobeams Based on the Differential Quadrature Method. Applied Sciences (Switzerland), 2019, 9, 3517.	1.3	18
41	Analysis of elastic bulk waves in functionally graded triclinic nanoplates using a quasi-3D bi-Helmholtz nonlocal strain gradient model. European Journal of Mechanics, A/Solids, 2019, 78, 103822.	2.1	17
42	WAVE PROPAGATION IN RECTANGULAR NANOPLATES BASED ON STRAIN GRADIENT THEORY WITH ONE GRADIENT PARAMETER WITH CONSIDERING INITIAL STRESS. Modern Physics Letters B, 2014, 28, 1450021.	1.0	15
43	Characteristics of elastic waves in radial direction of anisotropic solid sphere, a new closed-form solution. European Journal of Mechanics, A/Solids, 2019, 76, 36-45.	2.1	15
44	Wave dispersion in nonlocal anisotropic macro/nanoplates made of functionally graded materials. Waves in Random and Complex Media, 2021, 31, 1945-1989.	1.6	15
45	Static and free vibration analysis of carbon nano wires based on Timoshenko beam theory using differential quadrature method. Latin American Journal of Solids and Structures, 2011, 8, 463-472.	0.6	13
46	Static analysis of tapered nanowires based on nonlocal Euler-Bernoulli beam theory via differential quadrature method. Latin American Journal of Solids and Structures, 2012, 9, 1-10.	0.6	11
47	Wave propagation in anisotropic plates using trigonometric shear deformation theory. Mechanics of Advanced Materials and Structures, 2017, 24, 1135-1144.	1.5	9
48	Investigating Bulk Waves in Orthotropic Rectangular Nanoplates Based on Three Dimensional Elasticity Theory and Nonlocal Elasticity Theory. Brazilian Journal of Physics, 2014, 44, 361-367.	0.7	8
49	Harmonic differential quadrature method for static analysis of functionally graded single walled carbon nanotubes based on Euler-Bernoulli beam theory. Latin American Journal of Solids and Structures, 2012, 9, 633-641.	0.6	5
50	Static analysis of functionally graded rectangular nanoplates based on nonlocal third order shear deformation theory. International Journal of Engineering and Applied Sciences, 2016, 8, 87-87.	0.1	3
51	Shock factor investigation in a 3-D finite element model under shock loading. Latin American Journal of Solids and Structures, 2013, 10, 941-952.	0.6	2
52	Dynamics of nanocomposite plates. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 1.	0.8	2
53	Free Vibration of Functionally Graded Carbon Nanotube-reinforced Doubly-curved Shells. Current Mechanics and Advanced Materials, 2021, 1, 39-49.	0.1	Ο