
Fang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4978883/publications.pdf Version: 2024-02-01

FANC 7HANC

#	Article	IF	CITATIONS
1	Characterizing the volatility and mixing state of ambient fine particles in the summer and winter of urban Beijing. Atmospheric Chemistry and Physics, 2022, 22, 2293-2307.	4.9	2
2	Rapid narrowing of the urban–suburban gap in air pollutant concentrations in Beijing from 2014 to 2019. Environmental Pollution, 2022, 304, 119146.	7.5	8
3	The effect of black carbon aging from NO2 oxidation of SO2 on its morphology, optical and hygroscopic properties. Environmental Research, 2022, 212, 113238.	7.5	7
4	Measurement report: Hygroscopic growth of ambient fine particles measured at five sites in China. Atmospheric Chemistry and Physics, 2022, 22, 6773-6786.	4.9	8
5	The impact of the atmospheric turbulence-development tendency on new particle formation: a common finding on three continents. National Science Review, 2021, 8, nwaa157.	9.5	16
6	Explosive Secondary Aerosol Formation during Severe Haze in the North China Plain. Environmental Science & Technology, 2021, 55, 2189-2207.	10.0	96
7	Hygroscopicity of Organic Aerosols Linked to Formation Mechanisms. Geophysical Research Letters, 2021, 48, e2020GL091683.	4.0	13
8	Unexpected Oligomerization of Small α-Dicarbonyls for Secondary Organic Aerosol and Brown Carbon Formation. Environmental Science & Technology, 2021, 55, 4430-4439.	10.0	31
9	Vertical Characteristics of Pollution Transport in Hong Kong and Beijing, China. Atmosphere, 2021, 12, 457.	2.3	5
10	A Large Impact of Cooking Organic Aerosol (COA) on Particle Hygroscopicity and CCN Activity in Urban Atmosphere. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033628.	3.3	4
11	Evaluation of the contribution of new particle formation to cloud droplet number concentration in the urban atmosphere. Atmospheric Chemistry and Physics, 2021, 21, 14293-14308.	4.9	5
12	The NPF Effect on CCN Number Concentrations: A Review and Reâ€Evaluation of Observations From 35 Sites Worldwide. Geophysical Research Letters, 2021, 48, e2021GL095190.	4.0	12
13	Comparison of Atmospheric CO 2 , CH 4 , and CO at Two Stations in the Tibetan Plateau of China. Earth and Space Science, 2020, 7, e2019EA001051.	2.6	8
14	Background Characteristics of Atmospheric CO2 and the Potential Source Regions in the Pearl River Delta Region of China. Advances in Atmospheric Sciences, 2020, 37, 557-568.	4.3	13
15	Characterizing the ratio of nitrate to sulfate in ambient fine particles of urban Beijing during 2018–2019. Atmospheric Environment, 2020, 237, 117662.	4.1	20
16	Carbenium ion-mediated oligomerization of methylglyoxal for secondary organic aerosol formation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13294-13299.	7.1	28
17	Contrasting size-resolved hygroscopicity of fine particles derived by HTDMA and HR-ToF-AMS measurements between summer and winter in Beijing: the impacts of aerosol aging and local emissions. Atmospheric Chemistry and Physics, 2020, 20, 915-929.	4.9	33
18	Remarkable nucleation and growth of ultrafine particles from vehicular exhaust. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3427-3432.	7.1	122

Fang Zhang

#	Article	IF	CITATIONS
19	Significant contribution of organics to aerosol liquid water content in winter in Beijing, China. Atmospheric Chemistry and Physics, 2020, 20, 901-914.	4.9	39
20	An unexpected catalyst dominates formation and radiative forcing of regional haze. Proceedings of the United States of America, 2020, 117, 3960-3966.	7.1	132
21	The large proportion of black carbon (BC)-containing aerosols in the urban atmosphere. Environmental Pollution, 2020, 263, 114507.	7.5	19
22	Measurement report: Aircraft observations of ozone, nitrogen oxides, and volatile organic compounds over Hebei Province, China. Atmospheric Chemistry and Physics, 2020, 20, 14523-14545.	4.9	23
23	East Asian Study of Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation, and Climate (EASTâ€AlR _{CPC}). Journal of Geophysical Research D: Atmospheres, 2019, 124, 13026-13054.	3.3	175
24	Distinct Ultrafine―and Accumulationâ€Mode Particle Properties in Clean and Polluted Urban Environments. Geophysical Research Letters, 2019, 46, 10918-10925.	4.0	12
25	Significantly Enhanced Aerosol CCN Activity and Number Concentrations by Nucleationâ€Initiated Haze Events: A Case Study in Urban Beijing. Journal of Geophysical Research D: Atmospheres, 2019, 124, 14102-14113.	3.3	17
26	An improved algorithm for retrieving the fine-mode fraction of aerosol optical thickness. Part 2: Application and validation in Asia. Remote Sensing of Environment, 2019, 222, 90-103.	11.0	19
27	Analysis of patterns in the concentrations of atmospheric greenhouse gases measured in two typical urban clusters in China. Atmospheric Environment, 2018, 173, 343-354.	4.1	24
28	Emission or atmospheric processes? An attempt to attribute the source of large bias of aerosols in eastern China simulated by global climate models. Atmospheric Chemistry and Physics, 2018, 18, 1395-1417.	4.9	32
29	Quantify contribution of aerosol errors to cloud fraction biases in CMIP5 Atmospheric Model Intercomparison Project simulations. International Journal of Climatology, 2018, 38, 3140-3156.	3.5	17
30	Aerosol chemistry and particle growth events at an urban downwind site in North China Plain. Atmospheric Chemistry and Physics, 2018, 18, 14637-14651.	4.9	19
31	Retrieval of Cloud Condensation Nuclei Number Concentration Profiles From Lidar Extinction and Backscatter Data. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6082-6098.	3.3	16
32	Particle acidity and sulfate production during severe haze events in China cannot be reliably inferred by assuming a mixture of inorganic salts. Atmospheric Chemistry and Physics, 2018, 18, 10123-10132.	4.9	90
33	Growth rates of fine aerosol particles at a site near Beijing in June 2013. Advances in Atmospheric Sciences, 2018, 35, 209-217.	4.3	45
34	Characterization of aerosol hygroscopicity, mixing state, and CCN activity at a suburban site in the central North China Plain. Atmospheric Chemistry and Physics, 2018, 18, 11739-11752.	4.9	48
35	Using different assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field measurements in urban Beijing. Atmospheric Chemistry and Physics, 2018, 18, 6907-6921.	4.9	49
36	Influences of aerosol physiochemical properties and new particle formation on CCN activity from observation at a suburban site of China. Atmospheric Research, 2017, 188, 80-89.	4.1	30

Fang Zhang

#	Article	IF	CITATIONS
37	Overview of Persistent Haze Events in China. , 2017, , 3-25.		1
38	Reassessing the atmospheric oxidation mechanism of toluene. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8169-8174.	7.1	151
39	Uncertainty in Predicting CCN Activity of Aged and Primary Aerosols. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,723.	3.3	39
40	Enhanced hydrophobicity and volatility of submicron aerosols under severe emission control conditions in Beijing. Atmospheric Chemistry and Physics, 2017, 17, 5239-5251.	4.9	55
41	Simultaneous measurements of particle number size distributions at ground level and 260â€ ⁻ m on a meteorological tower in urban Beijing, China. Atmospheric Chemistry and Physics, 2017, 17, 6797-6811.	4.9	52
42	Distinct weekly cycles of thunderstorms and a potential connection with aerosol type in China. Geophysical Research Letters, 2016, 43, 8760-8768.	4.0	26
43	Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13630-13635.	7.1	1,044
44	Impacts of organic aerosols and its oxidation level on CCN activity from measurement at a suburban site in China. Atmospheric Chemistry and Physics, 2016, 16, 5413-5425.	4.9	42
45	Characterization of submicron aerosols at a suburban site in central China. Atmospheric Environment, 2016, 131, 115-123.	4.1	37
46	Detection and attribution of regional CO2 concentration anomalies using surface observations. Atmospheric Environment, 2015, 123, 88-101.	4.1	8
47	Chemical and optical properties of aerosols and their interrelationship in winter in the megacity Shanghai of China. Journal of Environmental Sciences, 2015, 27, 59-69.	6.1	33
48	Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China. Atmospheric Research, 2015, 155, 73-86.	4.1	35
49	Temporal variation of atmospheric CH4 and the potential source regions at Waliguan, China. Science China Earth Sciences, 2013, 56, 727-736.	5.2	29
50	Short-term variations of atmospheric CO2 and dominant causes in summer and winter: Analysis of 14-year continuous observational data at Waliguan, China. Atmospheric Environment, 2013, 77, 140-148.	4.1	20
51	1,2â€Addition of Alkyl Grignard Reagents to the Nitro Group: Simple Access to 2â€{Alkyl(hydroxy)amino]pyridine <i>N</i> â€Oxides and 2â€Alkylaminopyridine <i>N</i> â€Oxides. European Journal of Organic Chemistry, 2013, 2013, 6152-6157.	2.4	8
52	Substitution of the Nitro Group with Grignard Reagents: Facile Arylation and Alkenylation of PyridineN-Oxides. Organic Letters, 2012, 14, 5618-5620.	4.6	20
53	Facile One-Pot Direct Arylation and Alkylation of Nitropyridine <i>N</i> -Oxides with Grignard Reagents. Organic Letters, 2011, 13, 6102-6105.	4.6	55
54	The characteristics of atmospheric CO2 concentration variation of four national background stations in China. Science in China Series D: Earth Sciences, 2009, 52, 1857-1863.	0.9	55