
Panagiotis Anastasios Bousoulas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4978638/publications.pdf

Version: 2024-02-01

PANAGIOTIS ANASTASIOS

#	Article	IF	CITATIONS
1	Low Power Stochastic Neurons From SiO ₂ -Based Bilayer Conductive Bridge Memristors for Probabilistic Spiking Neural Network Applications—Part II: Modeling. IEEE Transactions on Electron Devices, 2022, 69, 2368-2376.	1.6	9
2	Low Power Stochastic Neurons From SiO ₂ -Based Bilayer Conductive Bridge Memristors for Probabilistic Spiking Neural Network Applications—Part I: Experimental Characterization. IEEE Transactions on Electron Devices, 2022, 69, 2360-2367.	1.6	11
3	Chemical Wave Computing from Labware to Electrical Systems. Electronics (Switzerland), 2022, 11, 1683.	1.8	3
4	Memristor-based Oscillator for Complex Chemical Wave Logic Computations: Fredkin Gate Paradigm. , 2022, , .		0
5	Demonstration of Enhanced Switching Variability and Conductance Quantization Properties in a SiO ₂ Conducting Bridge Resistive Memory with Embedded Two-Dimensional MoS ₂ Material. ACS Applied Electronic Materials, 2022, 4, 2869-2878.	2.0	Ο
6	Emulating low power nociceptive functionalities with a forming-free SiO2/VO <i>x</i> conductive bridge memory with Pt nanoparticles. Applied Physics Letters, 2022, 120, .	1.5	5
7	Emulating artificial neuron and synaptic properties with SiO ₂ -based memristive devices by tuning threshold and bipolar switching effects. Journal Physics D: Applied Physics, 2021, 54, 225303.	1.3	23
8	Emulating Artificial Synaptic Plasticity Characteristics from SiO2-Based Conductive Bridge Memories with Pt Nanoparticles. Micromachines, 2021, 12, 306.	1.4	10
9	Tuning the analog synaptic properties of forming free SiO2 memristors by material engineering. Applied Physics Letters, 2021, 118, .	1.5	20
10	Impact of Active Electrode on the Synaptic Properties of SiO ₂ -Based Forming-Free Conductive Bridge Memory. IEEE Transactions on Electron Devices, 2021, 68, 1598-1603.	1.6	15
11	Highly Flexible Artificial Synapses from SiO ₂ -Based Conductive Bridge Memristors and Pt Nanoparticles through a Crack Suppression Technique. ACS Applied Electronic Materials, 2021, 3, 2729-2737.	2.0	7
12	Unconventional Logic on Memristor-Based Oscillatory Medium. , 2021, , .		1
13	Emulating artificial mechanoreceptor functionalities from SiO2-based memristor and PDMS stretchable sensor for artificial skin applications. , 2021, , .		Ο
14	Multifunctional Spatially-Expanded Logic Gate for Unconventional Computations with Memristor-Based Oscillators. , 2021, , .		1
15	Memristive Oscillatory Networks for Computing: The Chemical Wave Propagation Paradigm. , 2021, , .		5
16	Emulating artificial mechanoreceptor functionalities from SiO ₂ -based memristor and PDMS stretchable sensor for artificial skin applications. , 2021, , .		0
17	Margolus Chemical Wave Logic Gate with Memristive Oscillatory Networks. , 2021, , .		3
18	Investigating the origins of ultra-short relaxation times of silver filaments in forming-free SiO ₂ -based conductive bridge memristors. Nanotechnology, 2020, 31, 454002.	1.3	34

PANAGIOTIS ANASTASIOS

#	Article	IF	CITATIONS
19	Spatial Confinement Effects of Embedded Nanocrystals on Multibit and Synaptic Properties of Forming Free SiO ₂ -Based Conductive Bridge Random Access Memory. IEEE Electron Device Letters, 2020, 41, 1013-1016.	2.2	13
20	Enhancing the synaptic properties of low-power and forming-free HfOx/TaOy/HfOx resistive switching devices. Microelectronic Engineering, 2020, 229, 111358.	1.1	22
21	Impact of Pt embedded nanocrystals on the resistive switching and synaptic properties of forming free TiO2 – x/TiO2 – y-based bilayer structures. Journal of Applied Physics, 2019, 126, .	1.1	24
22	Tuning Resistive, Capacitive, and Synaptic Properties of Forming Free TiO _{2â€x} â€Based RRAM Devices by Embedded Pt and Ta Nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700440.	0.8	12
23	Investigating the origins of high multilevel resistive switching in forming free Ti/TiO2â°'x-based memory devices through experiments and simulations. Journal of Applied Physics, 2017, 121, .	1.1	32
24	Resistive memory multilayer structure with self-rectifying and forming free properties along with their modification by adding a hafnium nanoparticle midlayer. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	3
25	Low-Power Forming Free TiO _{2–<italic>x</italic>} /HfO _{2–<italic>y</italic>} /TiO _{2â€ RRAM Devices Exhibiting Synaptic Property Characteristics. IEEE Transactions on Electron Devices, 2017. 64. 3151-3158.}	e" <italic 1.6</italic 	>x
26	Coexistence of bipolar and threshold resistive switching in TiO ₂ based structure with embedded hafnium nanoparticles. Journal Physics D: Applied Physics, 2017, 50, 045103.	1.3	11
27	Ultraâ€Low Power Multilevel Switching with Enhanced Uniformity in Forming Free TiO _{2â^'x} â€Based RRAM with Embedded Pt Nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700570.	0.8	25
28	Experiments and simulation of multilevel resistive switching in forming free Ti/TiO <inf>2â^'x</inf> RRAM devices. , 2017, , .		2
29	Heavy metal ion detection using DNAzyme-modified platinum nanoparticle networks. Sensors and Actuators B: Chemical, 2017, 239, 962-969.	4.0	25
30	Understanding the Formation of Conducting Filaments in RRAM Through the Design of Experiments. , 2017, , .		0
31	Understanding the Formation of Conducting Filaments in RRAM Through the Design of Experiments. International Journal of High Speed Electronics and Systems, 2016, 25, 1640007.	0.3	5
32	Engineering amorphous-crystalline interfaces in TiO2â^'x/TiO2â^'y-based bilayer structures for enhanced resistive switching and synaptic properties. Journal of Applied Physics, 2016, 120, .	1.1	38
33	Physical modelling of the SET/RESET characteristics and analog properties of TiO <inf>x</inf> /HfO <inf>2â^'x</inf> /TiO <inf>x</inf> based RRAM devices. , 2016, , .		2
34	Low-Power and Highly Uniform 3-b Multilevel Switching in Forming Free TiO _{2–<italic>x</italic>} -Based RRAM With Embedded Pt Nanocrystals. IEEE Electron Device Letters, 2016, 37, 874-877.	2.2	59
35	Memory programming of TiO2â^'x films by Conductive Atomic Force Microscopy evidencing filamentary resistive switching. Applied Surface Science, 2015, 332, 55-61.	3.1	24
36	Material and Device Parameters Influencing Multi-Level Resistive Switching of Room Temperature Grown Titanium Oxide Layers. Materials Research Society Symposia Proceedings, 2015, 1729, 59-64.	0.1	0

#	Article	IF	CITATIONS
37	Improving the resistive switching uniformity of forming-free TiO <inf>2−x</inf> based devices by embedded Pt nanocrystals. , 2015, , .		5
38	Structural Characterization of Layers for Advanced Non-volatile Memories. Springer Proceedings in Physics, 2015, , 9-17.	0.1	0
39	Influence of oxygen content of room temperature TiO _{2â°x} deposited films for enhanced resistive switching memory performance. Journal of Applied Physics, 2014, 115, 034516.	1.1	47
40	Influence of Ti top electrode thickness on the resistive switching properties of forming free and self-rectified TiO 2â^'x thin films. Thin Solid Films, 2014, 571, 23-31.	0.8	33