Jérémie Cabessa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4978390/publications.pdf

Version: 2024-02-01

ΙΔΩΡΔΩΜΙΕ CARESSA

#	Article	IF	CITATIONS
1	Automata complete computation with Hodgkin–Huxley neural networks composed of synfire rings. Neural Networks, 2020, 126, 312-334.	5.9	3
2	Turing complete neural computation based on synaptic plasticity. PLoS ONE, 2019, 14, e0223451.	2.5	8
3	A Memory-Based STDP Rule for Stable Attractor Dynamics in Boolean Recurrent Neural Networks. , 2019, , .		Ο
4	Computational capabilities of analog and evolving neural networks over infinite input streams. Journal of Computer and System Sciences, 2019, 101, 86-99.	1.2	2
5	Robust Optimal-Size Implementation of Finite State Automata with Synfire Ring-Based Neural Networks. Lecture Notes in Computer Science, 2019, , 806-818.	1.3	Ο
6	Automata Computation with Hodgkin-Huxley Based Neural Networks Composed of Synfire Rings. , 2018, , .		2
7	Attractor dynamics of a Boolean model of a brain circuit controlled by multiple parameters. Chaos, 2018, 28, 106318.	2.5	12
8	An STDP Rule for the Improvement and Stabilization of the Attractor Dynamics of the Basal Ganglia-Thalamocortical Network. Lecture Notes in Computer Science, 2018, , 693-702.	1.3	1
9	Emulation of finite state automata with networks of synfire rings. , 2017, , .		5
10	Expressive Power of Evolving Neural Networks Working on Infinite Input Streams. Lecture Notes in Computer Science, 2017, , 150-163.	1.3	2
11	Neural Computation with Spiking Neural Networks Composed of Synfire Rings. Lecture Notes in Computer Science, 2017, , 245-253.	1.3	2
12	Attractor-based complexity of a Boolean model of the basal ganglia-thalamocortical network. , 2016, ,		3
13	Attractor Dynamics Driven by Interactivity in Boolean Recurrent Neural Networks. Lecture Notes in Computer Science, 2016, , 115-122.	1.3	4
14	Expressive power of first-order recurrent neural networks determined by their attractor dynamics. Journal of Computer and System Sciences, 2016, 82, 1232-1250.	1.2	12
15	Computational capabilities of recurrent neural networks based on their attractor dynamics. , 2015, , .		5
16	Recurrent Neural Networks and Super-Turing Interactive Computation. Springer Series in Bio-/neuroinformatics, 2015, , 1-29.	0.1	5
17	Expressive Power of Non-deterministic Evolving Recurrent Neural Networks in Terms of Their Attractor Dynamics. Lecture Notes in Computer Science, 2015, , 144-156.	1.3	3
18	On Super-Turing Neural Computation. Advances in Cognitive Neurodynamics, 2015, , 307-312.	0.1	1

JéRéMIE CABESSA

#	Article	IF	CITATIONS
19	Neural Dynamics Associated to Preferred Firing Sequences. Advances in Cognitive Neurodynamics, 2015, , 597-604.	0.1	0
20	An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks. PLoS ONE, 2014, 9, e94204.	2.5	25
21	THE SUPER-TURING COMPUTATIONAL POWER OF PLASTIC RECURRENT NEURAL NETWORKS. International Journal of Neural Systems, 2014, 24, 1450029.	5.2	47
22	The Super-Turing Computational Power of Interactive Evolving Recurrent Neural Networks. Lecture Notes in Computer Science, 2013, , 58-65.	1.3	11
23	The Computational Power of Interactive Recurrent Neural Networks. Neural Computation, 2012, 24, 996-1019.	2.2	39
24	Common knowledge and limit knowledge. Theory and Decision, 2012, 73, 423-440.	1.0	3
25	The expressive power of analog recurrent neural networks on infinite input streams. Theoretical Computer Science, 2012, 436, 23-34.	0.9	30
26	Evolving recurrent neural networks are super-Turing. , 2011, , .		20
27	Agreeing to Disagree with Limit Knowledge. Lecture Notes in Computer Science, 2011, , 51-60.	1.3	1
28	A Hierarchical Classification of First-Order Recurrent Neural Networks. Lecture Notes in Computer Science, 2010, , 142-153.	1.3	4
29	A Hierarchical Classification of First-Order Recurrent Neural Networks. Chinese Journal of Physiology, 2010, 53, 407-416.	1.0	9
30	Functional Interactions in Hierarchically Organized Neural Networks Studied with Spatiotemporal Firing Patterns and Phase-Coupling Frequencies. Chinese Journal of Physiology, 2010, 53, 382-395.	1.0	3
31	A Game Theoretical Approach to The Algebraic Counterpart of The Wagner Hierarchy : Part II. RAIRO - Theoretical Informatics and Applications, 2009, 43, 463-515.	0.5	Ο
32	A game theoretical approach to the algebraic counterpart of the Wagner hierarchy : PartÂl. RAIRO - Theoretical Informatics and Applications, 2009, 43, 443-461.	0.5	1
33	Limit knowledge of rationality. , 2009, , .		0
34	The Algebraic Counterpart of the Wagner Hierarchy. , 2008, , 100-109.		0