Humberto RodrÃ-guez-Solla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4978387/publications.pdf

Version: 2024-02-01

157

all docs

93 2,072 26
papers citations h-index

157

docs citations

h-index g-index

157
1570
times ranked citing authors

38

#	Article	IF	Citations
1	Asymmetric synthesis of cyclic \hat{l}^2 -amino acids and cyclic amines via sequential diastereoselective conjugate addition and ring closing metathesis. Tetrahedron, 2003, 59, 3253-3265.	1.9	90
2	Stereospecific and highly stereoselective cyclopropanation reactions promoted by samarium. Chemical Society Reviews, 2010, 39, 4103.	38.1	73
3	Asymmetric synthesis and applications of \hat{l}^2 -amino Weinreb amides: asymmetric synthesis of (S)-coniine. Organic and Biomolecular Chemistry, 2004, 2, 1387-1394.	2.8	67
4	Direct Aldol Reactions Catalyzed by a Heterogeneous Guanidinium Salt/Proline System under Solvent-Free Conditions. Organic Letters, 2011, 13, 3032-3035.	4.6	64
5	\hat{I}^2 -Elimination reactions by using samarium diiodide. Chemical Society Reviews, 2004, 33, 599-609.	38.1	62
6	Ring Closing Metathesis for the Asymmetric Synthesis of (S)-Homopipecolic Acid, (S)-Homoproline and (S)-Coniine. Synlett, 2002, 2002, 1146-1148.	1.8	57
7	Switching Diastereoselectivity in Proline-Catalyzed Aldol Reactions. Journal of Organic Chemistry, 2012, 77, 10375-10381.	3.2	53
8	Synthesis of (E)- \hat{l}_{\pm} , \hat{l}^2 -Unsaturated Esters and Amides with Total Selectivity Using Samarium Diiodide. Angewandte Chemie - International Edition, 2000, 39, 2773-2775.	13.8	52
9	Very Rapid Preparation of Sml2 by Sonic Treatment of Iodoform and Metallic Samarium. European Journal of Organic Chemistry, 2003, 2003, 1775-1778.	2.4	48
10	Addition Reactions of Chloro- or Iodomethyllithium to Imines. Synthesis of Enantiopure Aziridines and Î ² -Chloroamines. Journal of Organic Chemistry, 2009, 74, 2452-2459.	3.2	48
11	Addition Reactions of Iodomethyllithium to Imines. A Direct and Efficient Synthesis of Aziridines and Enantiopure Amino Aziridines. Organic Letters, 2008, 10, 4457-4460.	4.6	47
12	Sequential Elimination-Reduction Reactions Promoted by Samarium Diiodide: Synthesis of 2,3-Dideuterioesters or -amides. Chemistry - A European Journal, 2001, 7, 4266-4271.	3.3	45
13	Synthesis and Synthetic Applications of & https://www.examp.com/applications/synthesis and Synthesis and Sy	1.6	44
14	Synthesis of (E)- \hat{l}_{\pm} , \hat{l}^2 -Unsaturated Amides with High Selectivity by Using Samarium Diiodide. Chemistry - A European Journal, 2001, 7, 3062-3068.	3.3	43
15	Stereospecific Cyclopropanation of Highly Substituted Câ [°] C Double Bonds Promoted by CrCl ₂ . Stereoselective Synthesis of Cyclopropanecarboxamides and Cyclopropyl Ketones. Organic Letters, 2007, 9, 2981-2984.	4.6	41
16	General Metal-Free Baeyer–Villiger-Type Synthesis of Vinyl Acetates. Organic Letters, 2013, 15, 2810-2813.	4.6	41
17	Highly enantioselective synthesis of α-azido-β-hydroxy methyl ketones catalyzed by a cooperative proline–guanidinium salt system. Chemical Communications, 2014, 50, 2598.	4.1	40
18	Modern Synthetic Methods for the Stereoselective Construction of 1,3-Dienes. Molecules, 2021, 26, 249.	3.8	39

#	Article	IF	CITATIONS
19	Synthesis of Different Deuterated Carboxylic Acids from Unsaturated Acids Promoted by Samarium Diiodide and D2O. Chemistry - A European Journal, 2002, 8, 4493-4497.	3.3	35
20	Photoinduced Metalation of Nonactivated Câ^'Cl Bonds with Samarium Diiodide:  Synthesis of Alkenes with High (Z)-Selectivity throughβ-Elimination Reactionsâ€. Organic Letters, 2005, 7, 5833-5835.	4.6	35
21	Efficient Nitro-Aldol Reaction Using Sml2:Â A New Route to Nitro Alcohols under Very Mild Conditions. Journal of Organic Chemistry, 2006, 71, 7919-7922.	3.2	35
22	Sequential Reactions Promoted by Manganese:  Completely Stereoselective Synthesis of (⟨i⟩E⟨/i⟩)-α,β-Unsaturated Amides, Ketones, Aldehydes, and Carboxylic Acids. Journal of Organic Chemistry, 2007, 72, 7974-7979.	3.2	35
23	Asymmetric conjugate reductions with samarium diiodide: asymmetric synthesis of (2S,3R)- and (2S,3S)-[2-2H,3-2H]-leucine-(S)-phenylalanine dipeptides and (2S,3R)-[2-2H,3-2H]-phenylalanine methyl ester. Organic and Biomolecular Chemistry, 2005, 3, 1435-1447.	2.8	34
24	Synthesis of Isotopically Labeled (E)- \hat{l}^2 , \hat{l}^3 -Unsaturated Esters with Total or High Diastereoselectivity by Using Samarium Diiodide. Angewandte Chemie - International Edition, 2001, 40, 3897-3899.	13.8	33
25	Efficient Addition Reaction of Bromonitromethane to Aldehydes Catalyzed by NaI:  A New Route to 1-Bromo-1-nitroalkan-2-ols under Very Mild Conditions. Organic Letters, 2006, 8, 5979-5982.	4.6	31
26	Highly Enantioselective Prolineâ€Catalysed Direct Aldol Reaction of Chloroacetone and Aromatic Aldehydes. Chemistry - A European Journal, 2012, 18, 5188-5190.	3.3	29
27	Stereoselective functionalisation of SuperQuat enamides: asymmetric synthesis of homochiral 1,2-diols and α-benzyloxy carbonyl compounds. Tetrahedron, 2008, 64, 9320-9344.	1.9	28
28	Synthesis and structural characterization of cobalt(II) and copper(II) complexes with N,N-disubstituted-N′-acylthioureas. Polyhedron, 2012, 36, 133-140.	2.2	28
29	Recent Synthetic Applications of Manganese in Organic Synthesis. Chemistry - A European Journal, 2008, 14, 10184-10191.	3.3	25
30	Oxidative Functionalisation of SuperQuat Enamides: Asymmetric Synthesis of Homochiral 1,2 Diols. Synlett, 2003, 2003, 1659-1662.	1.8	24
31	Asymmetric synthesis of 3,4-anti- and 3,4-syn-substituted aminopyrrolidines via lithium amide conjugate addition. Organic and Biomolecular Chemistry, 2007, 5, 1961.	2.8	24
32	Sequential Synthesis of (E)- \hat{l} ±, \hat{l} ² -Unsaturated Primary Amides with Complete Stereoselectivity. Journal of Organic Chemistry, 2010, 75, 3451-3453.	3.2	23
33	The use of samarium or sodium iodide salts as an alternative for the aza-Henry reaction. Tetrahedron, 2012, 68, 1736-1744.	1.9	23
34	Synthesis of (E)- \hat{l} ±, \hat{l}^2 -unsaturated esters with total diastereoselectivity by using chromium dichloride. Tetrahedron Letters, 2004, 45, 2977-2979.	1.4	22
35	Diastereoselective conjugate reduction with samarium diiodide: asymmetric synthesis of methyl (2S,3R)-N-acetyl-2-amino-2,3-dideuterio-3-phenylpropionate. Chemical Communications, 2004, , 2502-2503.	4.1	21
36	The First Cyclopropanation Reaction of Unmasked α,β-Unsaturated Carboxylic Acids: Direct and Complete Stereospecific Synthesis of Cyclopropanecarboxylic Acids Promoted by Sm/CHI3â€. Organic Letters, 2007, 9, 2685-2688.	4.6	21

#	Article	IF	CITATIONS
37	A Convenient Samarium-Promoted Synthesis of Aliphatic (E)-Nitroalkenes under Mild Conditions. Journal of Organic Chemistry, 2007, 72, 5421-5423.	3.2	21
38	Ohmic Heating and Ionic Liquids in Combination for the Indiumâ€Promoted Synthesis of 1â€Halo Alkenyl Compounds: Applications to Pdâ€Catalysed Crossâ€Coupling Reactions. European Journal of Organic Chemistry, 2016, 2016, 99-107.	2.4	21
39	acknowledge financial support from II Plan Regional de Investigación del Principadó de Asturias (PB-EXPO1-11) and Ministerio de Ciencia y TecnologÃa (BQU2001-3807). We thank Dr. Francisco J. González for valuable discussions and Robin Walker for revising the English manuscript. J.M.C. thanks Carmen Fernández-Flórez for her time. H.R.S. thanks Principado de Asturias for a predoctoral fellowship	13.8	20
40	Angewandte Chemie - International Edition, 2002, 41, 1917. Lithium amide conjugate addition for the asymmetric synthesis of 3-aminopyrrolidines. Chemical Communications, 2006, , 2664.	4.1	20
41	General, Stereoselective Synthesis of $(\langle i\rangle Z\langle i\rangle)$ - \hat{l}^2 , \hat{l}^3 -Unsaturated Nitriles Promoted by Samarium Diiodide. Organic Letters, 2008, 10, 4549-4552.	4.6	20
42	TBD/Al2O3: a novel catalytic system for dynamic intermolecular aldol reactions that exhibit complex system behaviour. Organic and Biomolecular Chemistry, 2012, 10, 1976.	2.8	20
43	Synthesis of (E)- $\hat{l}\pm$, \hat{l}^2 -Unsaturated Esters and (Z)-Vinyl Halides with Total or High Diastereoselectivity by Using Samarium Metal. European Journal of Organic Chemistry, 2002, 2002, 1839-1847.	2.4	19
44	Synthesis of $E-\hat{l}\pm,\hat{l}^2$ -Unsaturated Ketones with Complete Stereoselectivity via Sequential Aldol-Type/Elimination Reactions Promoted by Samarium ÂĐiiodide or Chromium Dichloride. Synlett, 2006, 2006, 837-840.	1.8	19
45	Total Regioselective Transformation of Aromatic Aziridine 2-Carboxamides into 2-Aminoamides Promoted by Active Manganese. Journal of Organic Chemistry, 2010, 75, 2407-2410.	3.2	19
46	Synthesis of Enantiopure 2-C-Glycosyl-3-nitrochromenes. Journal of Organic Chemistry, 2013, 78, 12831-12836.	3.2	19
47	Reduction of Multiple Bonds without Hydrogen or Hydride Complexes: Samarium Diiodide as a Mild Reducing Reagent. European Journal of Organic Chemistry, 2006, 2006, 1613-1625.	2.4	18
48	The First Sequential Reaction Promoted by Manganese:  Complete Stereoselective Synthesis of (E)-α,β-Unsaturated Esters from 2,2-Dichloroesters and Aldehydes. Journal of Organic Chemistry, 2007, 72, 4396-4400.	3.2	18
49	Deuteration of $\hat{l}\pm,\hat{l}^2$ -acetylenic esters, amides, or carboxylic acids without using deuterium gas: synthesis of 2,2,3,3-tetradeuterioesters, amides, or acids. Tetrahedron Letters, 2004, 45, 2129-2131.	1.4	17
50	Synthesis of new acyl, furoyl, and benzoylthiocarbamates as polydentate systems. Structural study of isopropyl N-(2-furoyl)thiocarbamate. Tetrahedron, 2005, 61, 5812-5817.	1.9	17
51	Sequential Eliminationâ^'Cyclopropanation Reactions Promoted by Samarium:Â Highly Diastereoselective Synthesis of Cyclopropylamides. Journal of Organic Chemistry, 2003, 68, 1132-1133.	3.2	16
52	Stereoselective Olefination Reactions Promoted by Rieke Manganese. Synthesis, 2009, 2009, 2634-2645.	2.3	15
53	Enantiopure Preparation of the Two Enantiomers of the Pseudo-C2-SymmetricN,N-Dibenzyl-1,2:4,5-diepoxypentan-3-amine. Journal of Organic Chemistry, 2001, 66, 8661-8665.	3.2	14
54	Stereospecific and Stereoselective Alkyl and Silylcyclopropanation of \hat{l}_{\pm},\hat{l}^2 -Unsaturated Amides. Organic Letters, 2008, 10, 349-352.	4.6	14

#	Article	IF	CITATIONS
55	The Use of Samarium Enolates, A Novel Alternative in the Addition Reactions to Imines. Synthesis of 3â€Amino Esters, Amides and Enantiopure 3,4â€Diamino Esters. Advanced Synthesis and Catalysis, 2009, 351, 1238-1242.	4.3	14
56	TBD-catalyzed α-sulfenylation of cyclic ketones: desymmetrization of 4-substituted cyclohexanones. Tetrahedron, 2012, 68, 6438-6446.	1.9	14
57	Unctuous ZrO2 nanoparticles with improved functional attributes as lubricant additives. Nanotechnology, 2017, 28, 495704.	2.6	14
58	Synthesis of Sugar-Derived 2-Nitroalkanols via Henry Reaction Promoted by Samarium Diiodide or Indium. Synlett, 2012, 23, 2083-2086.	1.8	13
59	Indiumâ€Mediated Azaâ€Henry Reaction of Imines: Access to 2â€Nitroamines. European Journal of Organic Chemistry, 2012, 2012, 4339-4346.	2.4	13
60	Asymmetric Construction of Quaternary Stereocenters: Synthesis of Enantiopure Amino Acidâ€Based Tricyclic α,βâ€Enones through an <i>ipso</i> å€Friedel–Crafts/Michael Addition Cascade. Advanced Synthesis and Catalysis, 2012, 354, 295-300.	4.3	13
61	An efficient synthesis of (E)- $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones and esters with total stereoselectivity by using chromium dichloride. Tetrahedron, 2006, 62, 3292-3300.	1.9	12
62	Stereoselective synthesis of (Z)- \hat{l} ±-haloacrylic acid derivatives, and (Z)-haloallylic alcohols from aldehydes and trihaloesters or amides promoted by Rieke manganese. Organic and Biomolecular Chemistry, 2008, 6, 2934.	2.8	10
63	Highly Stereoselective Halocyclopropanation of α,βâ€Unsaturated Amides. Advanced Synthesis and Catalysis, 2009, 351, 2185-2198.	4.3	10
64	A Convenient Synthesis of Z-Allylsilanes with Good Stereoselectivity Promoted by Samarium Diiodide. Synlett, 2007, 2007, 0075-0078.	1.8	9
65	CrCl $<$ sub $>$ 2 $<$ /sub $>$ -Promoted Stereospecific and Stereoselective Alkyl- and Silylcyclopropanation of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Amides. Journal of Organic Chemistry, 2008, 73, 3828-3836.	3.2	9
66	A Convenient Synthesis of (E)- $\hat{l}\pm$, \hat{l}^2 -Unsaturated Esters with Total Stereoselectivity Promoted by Catalytic Samarium Diiodide. Synlett, 2011, 2011, 262-264.	1.8	9
67	Samariumâ€Promoted Asymmetric Aldol–Tishchenko Reaction: Synthesis of Amino Acidâ€Derived 4â€Aminoâ€1,3â€diols. Advanced Synthesis and Catalysis, 2012, 354, 1679-1684.	4.3	9
68	Synthesis and Synthetic Applications of Samarium Enolates of Unmasked Amides: Efficient Synthesis of 3-Aminoamides and 3-Amino-2-chloroamides. Synlett, 2010, 2010, 2119-2121.	1.8	8
69	An Efficient Catalytic Chromium-Mediated Iodocyclopropanation Reaction: Stereoselective Synthesis of Iodocyclopropanecarboxamides. Advanced Synthesis and Catalysis, 2011, 353, 49-52.	4.3	8
70	Temperature ontrolled Stereodivergent Synthesis of 2,2′â€Biflavanones Promoted by Samarium Diiodide. Chemistry - A European Journal, 2019, 25, 13104-13108.	3.3	8
71	Manganese-Promoted \hat{l}^2 -Elimination Reactions: Totally Stereoselective Synthesis of (E)- \hat{l}_{\pm} , \hat{l}^2 -Unsaturated Esters. Synlett, 2006, 2006, 315-317.	1.8	7
72	Stereoselective synthesis of (Z)- \hat{l}_{\pm} -halo- \hat{l}_{\pm} , \hat{l}_{\pm} -unsaturated esters, and amides from aldehydes and trihaloesters or amides promoted by manganese. Organic and Biomolecular Chemistry, 2008, 6, 451-453.	2.8	7

#	Article	IF	CITATIONS
73	Totally Selective Synthesis of Enantiopure (3S,5S)- and (3R,5R)-4-Amino-3,5-dihydroxypiperidines from Aminodiepoxides Derived from Serine. Journal of Organic Chemistry, 2008, 73, 6048-6051.	3.2	7
74	Manganeseâ€Promoted Regioselective Ringâ€Opening of 2,3â€Epoxy Acid Derivatives: A New Route to αâ€Hydro Acid Derivatives. Advanced Synthesis and Catalysis, 2009, 351, 2178-2184.	оху 4.3	7
7 5	Stereoselective Synthesis of Carbohydrate-Derived N-Sulfonyl Aziridines. Synlett, 2013, 24, 181-184.	1.8	7
76	Aza-Reformatsky Reaction Promoted by Catalytic Samarium Diiodide: SynthesisÂof β-Amino Esters or Amides. Synlett, 2014, 25, 1709-1712.	1.8	7
77	acknowledge financial support from II Plan Regional de Investigación del Principado de Asturias (PB-EXPO1-11) and Ministerio de Ciencia y TecnologÃa (BQU2001-3807). We thank Dr. Francisco J. González for valuable discussions and Robin Walker for revising the English manuscript. J.M.C. thanks Carmen Fernández-Flórez for her time. H.R.S. thanks Principado de Asturias for a predoctoral fellowship	2.0	6
78	The Addition Reaction of Samarium Enolates and 2â∈Haloenolates Derived from Esters, and Amides to Imines. Totally Stereoselective Synthesis of Enantiopure 3,4â€Diamino Esters or Amides. Advanced Synthesis and Catalysis, 2009, 351, 2991-3000.	4.3	6
79	General Preparation of 1â€Substituted (<i>E</i>)â€1,3â€Dienes under Mild Conditions. European Journal of Organic Chemistry, 2015, 2015, 2524-2530.	2.4	5
80	Metal-Mediated Debromination of gem-Dibromoalkenes under Mild Conditions. Synlett, 2016, 27, 1096-1099.	1.8	5
81	Synthesis of carbohydrate-derived (Z)-vinyl halides and silanes: Samarium-promoted stereoselective 1,2-elimination on sugar-derived α-halomethylcarbinol acetates. Tetrahedron, 2018, 74, 5475-5480.	1.9	5
82	A cooperative zinc/catalytic indium system for the stereoselective sequential synthesis of (<i>E</i>)-1,3-dienes from carbonyl compounds. Organic Chemistry Frontiers, 2021, 8, 591-598.	4.5	5
83	Chromium-Mediated Stereoselective Synthesis of Carbohydrate-Derived (E)- \hat{l}_{\pm} , \hat{l}^2 -Unsaturated Esters or Amides. Journal of Organic Chemistry, 2011, 76, 5461-5465.	3.2	4
84	Synthesis of Highly Functionalized Enantiopure Halocyclopropanes Derived from Carbohydrates. European Journal of Organic Chemistry, 2013, 2013, 4953-4961.	2.4	4
85	Synthesis and Synthetic Applications of \hat{l}_{\pm},\hat{l}^2 -Dideuterio- \hat{l}_{\pm} -amino Esters Promoted by Samarium Diiodide. Synlett, 2008, 2008, 402-404.	1.8	3
86	Recent Advances in the Chemistry and Biology of Spirocyclic Nucleosides. Topics in Heterocyclic Chemistry, 2019, , 171-213.	0.2	3
87	Sml2-promoted cross coupling reaction of N-2-bromoethylphthalimide and carbonyl compounds: Synthesis of α-aryl-α′-hydroxy ketones. Tetrahedron, 2020, 76, 130839.	1.9	3
88	Detection of sulfenic acid in intact proteins by mass spectrometric techniques: application to serum samples. RSC Advances, 2017, 7, 44162-44168.	3.6	1
89	Chemoenzymatic Stereoselective Synthesis of trans-Flavan-4-ols via Lipase-Catalyzed Kinetic Resolutions. Catalysts, 2021, 11, 1296.	3.5	1
90	Sequential Eliminationâ€"Cyclopropanation Reactions Promoted by Samarium: Highly Diastereoselective Synthesis of Cyclopropylamides ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
91	Very Rapid Preparation of Sml2 by Sonic Treatment of Iodoform and Metallic Samarium ChemInform, 2003, 34, no.	0.0	0
92	Asymmetric Synthesis of Cyclic \hat{l}^2 -Amino Acids and Cyclic Amines via Sequential Diastereoselective Conjugate Addition and Ring Closing Metathesis ChemInform, 2003, 34, no.	0.0	0
93	?-Elimination Reactions by Using Samarium Diiodide. ChemInform, 2005, 36, no.	0.0	O