
Ãkos Török

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4978356/publications.pdf Version: 2024-02-01

<u> Ακος ΤΑπράπκ</u>

#	Article	IF	CITATIONS
1	The influence of fabric and water content on selected rock mechanical parameters of travertine, examples from Hungary. Engineering Geology, 2010, 115, 237-245.	2.9	171
2	Mineralogical and colour changes of quartz sandstones by heat. Environmental Geology, 2004, 46, 311.	1.2	164
3	How River Rocks Round: Resolving the Shape-Size Paradox. PLoS ONE, 2014, 9, e88657.	1.1	111
4	Critical degree of saturation: A control factor of freeze–thaw damage of porous limestones at Castle of Chambord, France. Engineering Geology, 2015, 185, 71-80.	2.9	109
5	Surface strength and mineralogy of weathering crusts on limestone buildings in Budapest. Building and Environment, 2003, 38, 1185-1192.	3.0	90
6	Current methods and future trends in testing, durability analyses and provenance studies of natural stones used in historical monuments. Engineering Geology, 2010, 115, 139-142.	2.9	79
7	Urban and rural limestone weathering; the contribution of dust to black crust formation. Environmental Earth Sciences, 2011, 63, 675-693.	1.3	72
8	Black crusts on travertine: factors controlling development and stability. Environmental Geology, 2008, 56, 583-594.	1.2	51
9	Element partitioning and potential mobility within surface dusts on buildings in a polluted urban environment, Budapest. Atmospheric Environment, 2006, 40, 6780-6790.	1.9	49
10	Mineralogical, geochemical and microfabric evidences of gypsum crusts: a case study from Budapest. Environmental Geology, 2007, 52, 385-397.	1.2	47
11	Centrifugal model test on a riverine landslide in the Three Gorges Reservoir induced by rainfall and water level fluctuation. Geoscience Frontiers, 2022, 13, 101378.	4.3	47
12	Observations on the factors influencing stability of building stones following contour scaling: a case study of oolitic limestones from Budapest, Hungary. Building and Environment, 2003, 38, 1173-1183.	3.0	46
13	Transition metals and water-soluble ions in deposits on a building and their potential catalysis of stone decay. Atmospheric Environment, 2008, 42, 7657-7668.	1.9	40
14	The behaviour of consolidated volcanic tuffs: weathering mechanisms under simulated laboratory conditions. Environmental Geology, 2008, 56, 699-713.	1.2	36
15	Morphology and mineralogy of weathering crusts on highly porous oolitic limestones, a case study from Budapest. Environmental Geology, 2004, 46, 333.	1.2	35
16	Palynology of a terrestrial coal-bearing series across the Triassic/Jurassic boundary (Mecsek Mts,) Tj ETQq0 0 0 rg	;BT/Qverlc	ock 10 Tf 50 1

17	Adsorption and chemical precipitation of lead and zinc from contaminated solutions in porous rocks: Possible application in environmental protection. Journal of African Earth Sciences, 2016, 122, 98-106.	0.9	31
18	Oolitic limestone in a polluted atmospheric environment in Budapest: weathering phenomena and alterations in physical properties. Geological Society Special Publication, 2002, 205, 363-379.	0.8	30

#	Article	IF	CITATIONS
19	Geochemical and mineralogical composition of black weathering crusts on limestones from seven different European countries. Environmental Earth Sciences, 2018, 77, 1.	1.3	29
20	Slope stability and rockfall assessment of volcanic tuffs using RPAS with 2-D FEM slope modelling. Natural Hazards and Earth System Sciences, 2018, 18, 583-597.	1.5	29
21	GIS-based landslide hazard predicting system and its real-time test during a typhoon, Zhejiang Province, Southeast China. Engineering Geology, 2014, 175, 9-21.	2.9	27
22	The influence of lithology and pore-size distribution on the durability of acid volcanic tuffs, Hungary. Geological Society Special Publication, 2007, 271, 251-260.	0.8	26
23	Freeze-thaw durability of repair mortars and porous limestone: compatibility issues. Progress in Earth and Planetary Science, 2019, 6, .	1.1	26
24	Variability of technical properties and durability in volcanic tuffs from the same quarry region – examples from Northern Hungary. Engineering Geology, 2019, 262, 105319.	2.9	26
25	Predicting environmental conditions to minimise salt damage at the Tower of London: a comparison of two approaches. Environmental Geology, 2007, 52, 369-374.	1.2	25
26	In situ investigation of stone heritage sites for conservation purposes: a case study of the Székesfehérvár Ruin Garden in Hungary. Progress in Earth and Planetary Science, 2019, 6, .	1.1	23
27	Controls on development of Mid-Triassic ramps: examples from southern Hungary. Geological Society Special Publication, 1998, 149, 339-367.	0.8	22
28	The effect of temperature on the strength of two different granites. Central European Geology, 2015, 58, 356-369.	0.4	22
29	Geomaterials in construction and their sustainability: understanding their role in modern society. Geological Society Special Publication, 2016, 416, 1-22.	0.8	22
30	Non-destructive diagnosis by colorimetry of building stone subjected to high temperatures. European Journal of Environmental and Civil Engineering, 2016, 20, 643-655.	1.0	21
31	Long-term abrasion of rocks assessed by micro-Deval tests and estimation of the abrasion process of rock types based on strength parameters. Engineering Geology, 2021, 282, 105996.	2.9	21
32	Time-dependent changes in the strength of repair mortar used in the loss compensation of stone. Environmental Earth Sciences, 2011, 63, 1613-1621.	1.3	20
33	Analysing the modified Hoek–Brown failure criteria using Hungarian granitic rocks. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2016, 2, 131-136.	1.3	20
34	Relationship between density, compressive strength, tensile strength and aggregate properties of andesites from Hungary. Environmental Earth Sciences, 2017, 76, 1.	1.3	20
35	Application of UAV in Topographic Modelling and Structural Geological Mapping of Quarries and Their Surroundings—Delineation of Fault-Bordered Raw Material Reserves. Sensors, 2020, 20, 489.	2.1	20
36	Surface Weathering of Tuffs: Compositional and Microstructural Changes in the Building Stones of the Medieval Castles of Hungary. Minerals (Basel, Switzerland), 2020, 10, 376.	0.8	20

Ãκos Töröκ

9

#	Article	IF	CITATIONS
37	Shear strength testing of consolidated claystones: breakpoint detection of shear stress versus shear displacement curves, a statistical approach. GEM - International Journal on Geomathematics, 2021, 12, 1.	0.7	20
38	Formation of dolomite mottling in Middle Triassic ramp carbonates (Southern Hungary). Sedimentary Geology, 2000, 131, 131-145.	1.0	19
39	Building Stones. , 2011, , 11-95.		18
40	Differences in texture, physical properties and microbiology of weathering crust and host rock: a case study of the porous limestone of Budapest (Hungary). Geological Society Special Publication, 2007, 271, 261-276.	0.8	17
41	Failure mechanisms of repair mortar stone interface assessed by pull-off strength tests. Bulletin of Engineering Geology and the Environment, 2017, 76, 159-167.	1.6	14
42	Long-term assessment of creep and water effects on tunnel lining loads in weak rocks using displacement-based direct back analysis: an example from northwest of Iran. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8, 1.	1.3	14
43	Hungarian dimensional stones: an overview. Zeitschrift Der Deutschen Gesellschaft Fur Geowissenschaften, 2007, 158, 361-374.	0.1	13
44	Natural stones for monuments: their availability for restoration and evaluation. Geological Society Special Publication, 2010, 333, 1-9.	0.8	13
45	The influence of binder/aggregate ratio on the pore properties and strength of repair mortars. Environmental Earth Sciences, 2013, 69, 1439-1449.	1.3	12
46	The effect of stylolites on the deterioration of limestone: possible mechanisms of damage evolution. Environmental Earth Sciences, 2018, 77, 1.	1.3	12
47	Strength and abrasive properties of andesite: relationships between strength parameters measured on cylindrical test specimens and micro-Deval values—a tool for durability assessment. Bulletin of Engineering Geology and the Environment, 2020, , 1.	1.6	12
48	Sustainable exploitation of mafic rock quarry waste for carbon sequestration following ball milling. Resources Policy, 2018, 59, 24-32.	4.2	10
49	The susceptibility to degradation of stone materials used in the built heritage of the Ortygia island (Syracuse, Italy): A laboratory study. International Journal of Rock Mechanics and Minings Sciences, 2021, 146, 104877.	2.6	10
50	Los Angeles and Micro-Deval Values of Volcanic Rocks and Their Use as Aggregates, Examples from Hungary. , 2015, , 115-118.		10
51	In Situ Methods of Testing Stone Monuments and the Application of Nondestructive Physical Properties Testing in Masonry Diagnosis. , 2010, , 177-193.		9
52	Holographic testing of possible mechanical effects of laser cleaning on the structure of model fresco samples. NDT and E International, 2014, 63, 53-59.	1.7	9
53	Long-term durability tests of andesite aggregates from Hungary. Central European Geology, 2017, 60, 333-343.	0.4	9

54 Petrography, Fabric and Properties. , 2006, , 487-495.

#	Article	IF	CITATIONS
55	Building Stones. , 2014, , 11-95.		9
56	Slope stability assessment of weathered clay by using field data and computer modelling: a case study from Budapest. Natural Hazards and Earth System Sciences, 2007, 7, 417-422.	1.5	8
57	Laboratory determination of direct shear strength of granitoid rocks; examples from the host rock of the nuclear waste storage facility of Bátaapáti (Hungary). Central European Geology, 2010, 53, 405-417.	0.4	8
58	Porosity and compatibility of repair mortars and Hungarian porous limestones. Central European Geology, 2012, 55, 123-134.	0.4	8
59	Effect of Thermal and Freeze-thaw Stress on the Mechanical Properties of Porous Limestone. Periodica Polytechnica: Civil Engineering, 0, , .	0.6	8
60	Effects of long-term magnesium sulfate crystallisation tests on abrasion and durability of andesite aggregates. Bulletin of Engineering Geology and the Environment, 2021, 80, 8891-8901.	1.6	8
61	Study of Rock Mass Rating (RMR) and Geological Strength Index (CSI) Correlations in Granite, Siltstone, Sandstone and Quartzite Rock Masses. Applied Sciences (Switzerland), 2021, 11, 3351.	1.3	8
62	Investigation of the feasibility of using recycled steel fibers in tunnel lining segments. Tunnelling and Underground Space Technology, 2021, 110, 103826.	3.0	8
63	Direct shear strength test on rocks along discontinuities, under laboratory conditions. Pollack Periodica, 2014, 9, 139-150.	0.2	8
64	Facies analysis and genetic interpretation of travertine, Buda Vár-hegy, Hungary. Acta Geologica Hungarica, 2003, 46, 177-193.	0.2	7
65	Evaluation of the efficiency of consolidants on Hungarian porous limestone by non-destructive test methods. Central European Geology, 2007, 50, 299-312.	0.4	7
66	Physical changes of porous Hungarian limestones related to silicic acid ester consolidant treatments. Geological Society Special Publication, 2010, 331, 147-155.	0.8	6
67	Geothermal reservoir characteristics of Meso- and Cenozoic sedimentary rocks of Budapest (Hungary). Zeitschrift Der Deutschen Gesellschaft Fur Geowissenschaften, 2014, 165, 487-493.	0.1	6
68	Morphology and detachment mechanism of weathering crusts of porous limestone in the urban environment of Budapest. Central European Geology, 2007, 50, 225-240.	0.4	6
69	Dust deposition, microscale flow- and dispersion model of particulate matter, examples from the city center of Budapest. Idojaras, 2019, 123, 39-55.	0.2	6
70	Comparison of Mechanical Properties of Dry, Saturated and Frozen Porous Rocks. , 2019, , 113-118.		5
71	Effect of Cyclic Wetting and Drying on the Microstructure of Slip Zone Soils in Huangtupo Landslide. Journal of Engineering Science and Technology Review, 2016, 9, 209-216.	0.2	5
72	Comparative study of weathering features of stones in Hungarian castles: morphological characteristics and changes in physical properties. Zeitschrift Der Deutschen Gesellschaft Fur Geowissenschaften, 2007, 158, 931-955.	0.1	4

#	Article	IF	CITATIONS
73	Dimension stones of the North Hungarian masonry arch bridges. Central European Geology, 2015, 58, 230-245.	0.4	4
74	The effects of the different curing conditions and the role of added aggregate in the strength of repair mortars. Environmental Earth Sciences, 2017, 76, 1.	1.3	4
75	Experimental Investigation of Discoloration Generated by a CI ICE's Exhaust Gas on Various Stone Types. Periodica Polytechnica Transportation Engineering, 2018, 46, 158-163.	0.7	4
76	Muschelkalk Ramp Cycles Revisited. Stratigraphy & Timescales, 2018, 3, 265-284.	0.2	4
77	Characterization of Hoek–Brown constant mi of quasi-isotropic intact rock using rigidity index approach. Acta Geotechnica, 2022, 17, 877-902.	2.9	4
78	Freeze–Thaw and Salt Crystallization Durability of Silica Acid Ester Consolidated Porous Limestone from Hungary. Minerals (Basel, Switzerland), 2021, 11, 824.	0.8	4
79	The Angle Between the Sample Surface and the Shear Plane; Its Influence on the Direct Shear Strength of Jointed Granitic Rocks and Opalinus Claystone. Procedia Engineering, 2017, 191, 1008-1014.	1.2	3
80	Effect of Exhaust Gas on Natural Stone Tablets, a Laboratory Experiment. Periodica Polytechnica: Civil Engineering, 0, , .	0.6	3
81	Multivariate analysis of Miocene sediments: Rákóczi Square, new metro station area, Budapest, Hungary. Central European Geology, 2011, 54, 391-405.	0.4	3
82	Rainfall-Induced or Lake-Water-Level-Controlled Landslide? An Example from the Steep Slopes of Lake Balaton, Hungary. Water (Switzerland), 2022, 14, 1169.	1.2	3
83	Studies on the Mechanical Properties of Dry, Saturated, and Frozen Marls Using Destructive and Non-destructive Laboratory Approaches. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 0, , 1.	1.0	2
84	Physical Alteration and Color Change of Granite Subjected to High Temperature. Applied Sciences (Switzerland), 2021, 11, 8792.	1.3	2
85	Heat-related Changes of Density, P-wave Velocity, and Surface Hardness of Granite. Periodica Polytechnica: Civil Engineering, 0, , .	0.6	2
86	Stability Analysis of Wine Cellars Cut into Volcanic Tuffs in Northern Hungary. , 2015, , 153-157.		2
87	Engineering geologic evaluation of overcompacted claystone, new metro line, Budapest. Central European Geology, 2012, 55, 223-240.	0.4	1
88	Influence of Discontinuity Inclination on the Shear Strength of Mont Terri Opalinus Claystones. Periodica Polytechnica: Civil Engineering, 2016, , .	0.6	1
89	Colour of Stone Slabs under Different Standard Illuminations. Periodica Polytechnica: Civil Engineering, 2016, , .	0.6	1
90	Characterization of Historic Binders and Stones of a Ruined Medieval Church (Hungary). Periodica Polytechnica: Civil Engineering, 2020, , .	0.6	1

#	Article	IF	CITATIONS
91	Shear Strength Behavior of Mont Terri Opalinus Claystone in Fault Zone. Pollack Periodica, 2015, 10, 31-38.	0.2	1
92	Effect of different conservation methods on some mechanical properties of swine bone. , 2013, , .		1
93	Engineering geological characterization of sediments at a new metro station, Budapest. Pollack Periodica, 2014, 9, 17-28.	0.2	1
94	Types of Landslides along Lake Balaton, Hungary. Periodica Polytechnica: Civil Engineering, 0, , .	0.6	1
95	Lead (II) and zinc (II) ions removal capacity of coarse limestone and rhyolite tuff from aqueous solutions. ÉpÃŧÅ'anyag: Journal of Silicate Based and Composite Materials, 2013, 65, 86-89.	0.0	0
96	Utilization of repair mortar for the loss compensation of Hungarian porous limestone. ÉpÃŧÅ'anyag: Journal of Silicate Based and Composite Materials, 2014, 66, 109-112.	0.0	0
97	The application of multivariate data analysis in the interpretation of engineering geological parameters. Open Geosciences, 2016, 8, .	0.6	Ο
98	The effect of silica-acid-ester stone consolidants on coarse limestone. ÉpÃŧÅ'anyag: Journal of Silicate Based and Composite Materials, 2006, 58, 102-106.	0.0	0
99	The influence of geologic structure on design and construction in a moderately deformed paleozoic sequence in Eastern Australia. Central European Geology, 2007, 50, 363-380.	0.4	Ο
100	Long-Term Wear of Aggregates Assessed by Micro-Deval Tests. , 2019, , 95-100.		0
101	Shear strength behavior of Mont Terri Opalinus Claystone in fault zone. Pollack Periodica, 2015, 10, 31-38.	0.2	Ο