Silvia Celletti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4977963/publications.pdf

Version: 2024-02-01

26 629 16 25 papers citations h-index g-index

28 28 28 590
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Foliar application of wood distillate boosts plant yield and nutritional parameters of chickpea. Annals of Applied Biology, 2023, 182, 57-64.	2.5	20
2	Plant species and pH dependent responses to copper toxicity. Environmental and Experimental Botany, 2022, 196, 104791.	4.2	19
3	Phytotoxicity of hydrochars obtained by hydrothermal carbonization of manure-based digestate. Journal of Environmental Management, 2021, 280, 111635.	7.8	40
4	Evaluating the Aqueous Phase From Hydrothermal Carbonization of Cow Manure Digestate as Possible Fertilizer Solution for Plant Growth. Frontiers in Plant Science, 2021, 12, 687434.	3.6	19
5	Interaction Between Sulfur and Iron in Plants. Frontiers in Plant Science, 2021, 12, 670308.	3.6	41
6	Potential Use of Copper-Contaminated Soils for Hemp (Cannabis sativa L.) Cultivation. Environments - MDPI, 2021, 8, 111.	3.3	11
7	Physiological Responses to Fe Deficiency in Split-Root Tomato Plants: Possible Roles of Auxin and Ethylene?. Agronomy, 2020, 10, 1000.	3.0	10
8	Phosphorus deficiency changes carbon isotope fractionation and triggers exudate reacquisition in tomato plants. Scientific Reports, 2020, 10, 15970.	3.3	19
9	Selected Plant-Related Papers from the First Joint Meeting on Soil and Plant System Sciences (SPSS) Tj ETQq1 1 0 9, 1132.		gBT /Overloc 1
10	Root Handling Affects Carboxylates Exudation and Phosphate Uptake of White Lupin Roots. Frontiers in Plant Science, 2020, 11, 584568.	3.6	19
11	Evaluation of a Legume-Derived Protein Hydrolysate to Mitigate Iron Deficiency in Plants. Agronomy, 2020, 10, 1942.	3.0	15
12	Single and Combined Fe and S Deficiency Differentially Modulate Root Exudate Composition in Tomato: A Double Strategy for Fe Acquisition?. International Journal of Molecular Sciences, 2020, 21, 4038.	4.1	23
13	Preliminary evaluation of eggshells as a source of phosphate on hydroponically grown tomato (Solanum lycopersicum L.) seedlings. Journal of Plant Nutrition, 2020, 43, 1852-1861.	1.9	1
14	Mitochondria dysfunctions under Fe and S deficiency: is citric acid involved in the regulation of adaptive responses?. Plant Physiology and Biochemistry, 2018, 126, 86-96.	5.8	16
15	Revisiting Fe/S interplay in tomato: A split-root approach to study the systemic and local responses. Plant Science, 2018, 276, 134-142.	3.6	10
16	Does Fe accumulation in durum wheat seeds benefit from improved whole-plant sulfur nutrition?. Journal of Cereal Science, 2018, 83, 74-82.	3.7	36
17	Effect of three safeners on sulfur assimilation and iron deficiency response in barley (<i>Hordeum) Tj ETQq$1\ 1\ 0.7$</i>	84314 rgB 3.4	RT (Overlock 22
18	Terbuthylazine interferes with iron nutrition in maize (Zea mays) plants. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	16

SILVIA CELLETTI

#	Article	IF	CITATION
19	Olive (Olea europaea L.) plants transgenic for tobacco osmotin gene are less sensitive to in vitro-induced drought stress. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	24
20	Root physiological and transcriptional response to single and combined S and Fe deficiency in durum wheat. Environmental and Experimental Botany, 2017, 143, 172-184.	4.2	16
21	The characterization of the adaptive responses of durum wheat to different Fe availability highlights an optimum Fe requirement threshold. Plant Physiology and Biochemistry, 2016, 109, 300-307.	5.8	23
22	The effect of excess sulfate supply on iron accumulation in three graminaceous plants at the early vegetative phase. Environmental and Experimental Botany, 2016, 128, 31-38.	4.2	37
23	The interplay between sulfur and iron nutrition in tomato. Plant Physiology, 2015, 169, pp.00995.2015.	4.8	66
24	Effects of terbuthylazine on phytosiderophores release in iron deficient barley. Environmental and Experimental Botany, 2015, 116, 32-38.	4.2	13
25	Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato (<i>Solanum lycopersicum</i> L.) seedlings. Journal of Integrative Plant Biology, 2014, 56, 88-100.	8.5	43
26	Transcriptional and physiological changes in the S assimilation pathway due to single or combined S and Fe deprivation in durum wheat (Triticum durum L.) seedlings. Journal of Experimental Botany, 2013, 64, 1663-1675.	4.8	69