
Zhenliang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4977929/publications.pdf Version: 2024-02-01

7HENLIANC LL

#	Article	IF	CITATIONS
1	Shape-controlled hollow Cu2O@CuS nanocubes with enhanced photocatalytic activities towards degradation of tetracycline. Environmental Technology (United Kingdom), 2022, , 1-16.	2.2	ο
2	The fabrication of a highly electroactive chiral-interface self-assembled Cu(<scp>ii</scp>)-coordinated binary-polysaccharide composite for the differential pulse voltammetry (DPV) detection of tryptophan isomers. New Journal of Chemistry, 2022, 46, 9811-9818.	2.8	1
3	Hollow SnS2 microcubes for photocatalytic activity toward Rhodamine B. Journal of Materials Science: Materials in Electronics, 2022, 33, 12447-12456.	2.2	2
4	Flower-like Co3Ni1B nanosheets based on reduced graphene oxide (rGO) as an efficient electrocatalyst for the oxygen evolution reaction. New Journal of Chemistry, 2022, 46, 13524-13532.	2.8	10
5	An electrochemical chiral sensor based on the synergy of chiral ionic liquid and 3D-NGMWCNT for tryptophan enantioselective recognition. Mikrochimica Acta, 2021, 188, 163.	5.0	15
6	Self-assembled reduced graphene oxide/polyaniline/sodium carboxymethyl cellulose nanocomposite for voltammetric recognition of tryptophan enantiomers. Journal of Materials Science: Materials in Electronics, 2021, 32, 11791-11804.	2.2	6
7	Fabrication of an electrochemical chiral sensor via an integrated polysaccharides/3D nitrogen-doped graphene-CNT frame. Bioelectrochemistry, 2020, 131, 107396.	4.6	30
8	A synthesis of graphene quantum dots/hollow TiO2 nanosphere composites for enhancing visible light photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2020, 31, 1430-1441.	2.2	10
9	The one-pot synthesis of porous Ni _{0.85} Se nanospheres on graphene as an efficient and durable electrocatalyst for overall water splitting. New Journal of Chemistry, 2020, 44, 17313-17322.	2.8	19
10	Highly sensitive fluorescence sensor for mercury(II) based on boron- and nitrogen-co-doped graphene quantum dots. Journal of Colloid and Interface Science, 2020, 566, 357-368.	9.4	62
11	Electrochemical chiral sensing of tryptophan enantiomers by using 3D nitrogen-doped reduced graphene oxide and self-assembled polysaccharides. Mikrochimica Acta, 2019, 186, 557.	5.0	43
12	Perylene-functionalized graphene sheets modified with β-cyclodextrin for the voltammetric discrimination of phenylalanine enantiomers. Bioelectrochemistry, 2019, 129, 189-198.	4.6	34
13	Perylene-functionalized graphene sheets modified with chitosan for voltammetric discrimination of tryptophan enantiomers. Mikrochimica Acta, 2019, 186, 333.	5.0	47
14	Facile preparation of three-dimensional honeycomb nitrogen-doped carbon materials for supercapacitor applications. Journal of Materials Research, 2019, 34, 1200-1209.	2.6	5
15	The Synthesis of Chitosan Decorated Reduced Graphene Oxideâ€Ferrocene Nanocomposite and its Application in Electrochemical Detection Rhodamine B. Electroanalysis, 2019, 31, 1421-1428.	2.9	6
16	Graphene-ferrocene functionalized cyclodextrin composite with high electrochemical recognition capability for phenylalanine enantiomers. Bioelectrochemistry, 2019, 128, 74-82.	4.6	50
17	A Regular Self-Assembly Micro-Nano Structure Based on Sodium Carboxymethyl Cellulose-Reduced Graphene Oxide (rGO-EDA-CMC) for Electrochemical Chiral Sensor. Journal of the Electrochemical Society, 2019, 166, B173-B182.	2.9	12
18	SiO2@Graphene Composite Materials Obtained through Different Methods Used as Substrate Materials. Silicon, 2019, 11, 1261-1266.	3.3	1

ZHENLIANG LI

#	Article	lF	CITATIONS
19	Amino acid-inspired electrochemical recognition of phenylalanine enantiomers using amphoteric chitosan. New Journal of Chemistry, 2018, 42, 6817-6823.	2.8	6
20	Electrochemical recognition for tryptophan enantiomers based on 3, 4, 9, 10-perylenetetracarboxylic acid–chitosan composite film. Journal of Solid State Electrochemistry, 2018, 22, 2405-2412.	2.5	14
21	Formation of snowflake-like CdS/reduced graphene oxide composite for efficient photocatalytic organic dye degradation. Journal of Materials Science: Materials in Electronics, 2018, 29, 5944-5953.	2.2	13
22	Amino-functionalized graphene/chitosan composite as an enhanced sensing platform for highly selective detection of Cu2+. Ionics, 2018, 24, 1505-1513.	2.4	20
23	Highly selective tryptophan enantiomers electrochemical chiral sensor based on poly-lysine and functionalized multi-walled carbon nanotubes. Journal of Solid State Electrochemistry, 2018, 22, 973-981.	2.5	16
24	Chiral electrochemical recognition of tryptophan enantiomers at a multi-walled carbon nanotube– <i>N</i> -carboxymethyl chitosan composite-modified glassy carbon electrode. New Journal of Chemistry, 2018, 42, 11635-11641.	2.8	16
25	Advances in the use of functional composites of β-cyclodextrin in electrochemical sensors. Mikrochimica Acta, 2018, 185, 328.	5.0	80
26	The construction of electrochemical chiral interfaces using hydroxypropyl chitosan. RSC Advances, 2017, 7, 8542-8549.	3.6	23
27	A new route to synthesize polyaniline-grafted carboxyl-functionalized graphene composite materials with excellent electrochemical performance. Iranian Polymer Journal (English Edition), 2017, 26, 423-430.	2.4	13
28	Tryptophan non-covalent modification of reduced graphene oxide for sensitive detection of Cu2+. Journal of Materials Science: Materials in Electronics, 2017, 28, 9634-9641.	2.2	9
29	Electrochemical enantiorecognition of tryptophan enantiomers based on a multi-walled carbon nanotube–hydroxyethyl chitosan composite film. Analytical Methods, 2017, 9, 5149-5155.	2.7	17
30	Enhanced photocatalytic organic dye removal performance of micro-nanostructured TiO2/graphene composites by using hydrochloric acid control its morphology. Journal of Materials Science: Materials in Electronics, 2017, 28, 14543-14553.	2.2	4
31	One-step hydrothermal synthesis of magnetic responsive TiO ₂ nanotubes/Fe ₃ O ₄ /graphene composites with desirable photocatalytic properties and reusability. RSC Advances, 2016, 6, 39348-39355.	3.6	17
32	A Highly Effective Electrochemical Chiral Sensor of Tryptophan Enantiomers Based on Covalently Functionalize Reduced Graphene Oxide with L-Lysine. Journal of the Electrochemical Society, 2016, 163, B272-B279.	2.9	43
33	The construction and application of chiral electrochemical sensors. Analytical Methods, 2016, 8, 8134-8140.	2.7	24
34	Hierarchically structured nitrogen-doped carbon for advanced supercapacitor electrode materials. Ionics, 2016, 22, 1197-1207.	2.4	15
35	Structural and Textural Characteristics of Zn-Containing ZSM-5 Zeolites and Application for the Selective Catalytic Reduction of NOx with NH3 at High Temperatures. Catalysis Surveys From Asia, 2016, 20, 41-52.	2.6	15
36	Ultrasonic preparation of cellulose/Ag/polyaniline conductive composites and its electrical properties. Journal of Materials Science: Materials in Electronics, 2015, 26, 7295-7302.	2.2	10

ZHENLIANG LI

#	Article	IF	CITATIONS
37	Synthesis of graphene/Fe3O4/NiO magnetic nanocomposites and its application in photocatalytic degradation the organic pollutants in wastewater. Journal of Porous Materials, 2015, 22, 1245-1253.	2.6	21
38	An electrochemical chiral sensor for tryptophan enantiomers based on reduced graphene oxide/1,10-phenanthroline copper(<scp>ii</scp>) functional composites. RSC Advances, 2015, 5, 60638-60645.	3.6	19
39	Synthesis and Luminescence Properties of Rod-Shaped La2O3:Eu3+ Nanocrystalline Using Carbon Nanotubes as Templates. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 988-992.	0.6	1
40	Fabrication of Polyaniline/Graphene/Tb ³⁺ Conductive Composite Material. Materials and Manufacturing Processes, 2015, 30, 335-339.	4.7	11
41	Highly selective detection of trace Cu2+ based on polyethyleneimine-reduced graphene oxide nanocomposite modified glassy carbon electrode. Ionics, 2015, 21, 3125-3133.	2.4	27
42	Mechanical Properties of Epoxy Resin/PMMA/SiO2 Dental Composites. Journal of Testing and Evaluation, 2015, 43, 80-86.	0.7	1
43	Synthesis of conductive PPy/graphene/rare-earth ions composites and its application in the electrode materials. Journal of Materials Science: Materials in Electronics, 2014, 25, 4714-4719.	2.2	0
44	Molecular dynamics simulation on the interaction between single-walled carbon nanotubes and binaphthyl core-based chiral phenylene dendrimers. Journal of Materials Research, 2014, 29, 2156-2161.	2.6	9
45	Synthesis and characterisation of magneticâ€fluorescent Fe ₃ O ₄ @SiO ₂ @ZnS nanocomposites. Micro and Nano Letters, 2014, 9, 171-174.	1.3	4
46	A new method to construct hierarchical ZSM-5 zeolites with excellent catalytic activity. Journal of Porous Materials, 2014, 21, 957-965.	2.6	12
47	Synthesis, characterization and supercapacitors of electrically conductive PPy/graphene/rare earth ions composites. Polymer Bulletin, 2014, 71, 2173-2184.	3.3	7
48	Polypyrrole coated graphene nanoplatelets and the effect of rare earth ions with nanocomposites. Journal of Polymer Research, 2014, 21, 1.	2.4	1
49	Preparation and characterization of conductive and magnetic PPy/Fe ₃ O ₄ /Ag nanocomposites. Polymer Composites, 2014, 35, 450-455.	4.6	4
50	Preparation and Photocatalytic Performance of Magnetic TiO ₂ /Montmorillonite/Fe ₃ O ₄ Nanocomposites. Industrial & Engineering Chemistry Research, 2014, 53, 8057-8061.	3.7	38
51	Preparation and electrochemistry of nanostructured PPy/graphite nanosheets/rare earth ions composites for supercapacitor. Polymer Engineering and Science, 2014, 54, 2731-2738.	3.1	5
52	Synthesis of hierarchically structured iron oxide in magnetic field and their hydrophobic property. CrystEngComm, 2013, 15, 6546.	2.6	7
53	Preparation and characterisation of PPy/NanoGs/Fe3O4conductive and magnetic nanocomposites. Journal of Experimental Nanoscience, 2013, 8, 113-120.	2.4	6
54	Synthesis and Characterization of Modified Epoxy Resin/Modified Nano-SiO ₂ Composite. Advanced Composites Letters, 2013, 22, 096369351302200.	1.3	0

ZHENLIANG LI

#	Article	IF	CITATIONS
55	Molecular dynamics study on the microstructure of dendrimers/graphite composites. Journal of Materials Research, 2012, 27, 1124-1130.	2.6	4
56	Facile synthesis of highly conductive PPy/graphene nanosheet /Gd ³⁺ composites. High Performance Polymers, 2012, 24, 105-111.	1.8	7
57	Fabrication of NanoGs/PPy/Polymethacrylate (PMMA)-Epoxy Conductive Films. Materials and Manufacturing Processes, 2012, 27, 1324-1328.	4.7	4
58	Preparation and Characterization of Graphene/Europium Oxide Composites. Materials and Manufacturing Processes, 2012, 27, 494-498.	4.7	24
59	Synthesis of Fe ₃ O ₄ Nanoparticles Using Controlled Ammonia Vapor Diffusion under Ultrasonic Irradiation. Industrial & Engineering Chemistry Research, 2011, 50, 3534-3539.	3.7	53
60	Oneâ€step synthesis of highly conductive PPy/graphite nanosheets/Gd ³⁺ composites. Polymer Composites, 2011, 32, 1274-1279.	4.6	4
61	Synthesis of graphite nanosheets/polyaniline nanorods composites with ultrasonic and conductivity. Journal of Applied Polymer Science, 2009, 112, 573-578.	2.6	23