List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4977865/publications.pdf Version: 2024-02-01

HELENIA DEDELDA

#	Article	IF	CITATIONS
1	Low-temperature pyrolysis products of waste cork and lignocellulosic biomass: product characterization. Biomass Conversion and Biorefinery, 2023, 13, 2267-2277.	2.9	6
2	Tree bark characterization envisioning an integrated use in a biorefinery. Biomass Conversion and Biorefinery, 2023, 13, 2029-2043.	2.9	17
3	Low-temperature biochars from cork-rich and phloem-rich wastes: fuel, leaching, and methylene blue adsorption properties. Biomass Conversion and Biorefinery, 2022, 12, 3899-3909.	2.9	11
4	Pyrolysis behavior of alternative cork species. Journal of Thermal Analysis and Calorimetry, 2022, 147, 4017-4025.	2.0	5
5	D-Lactic acid production from Cistus ladanifer residues: Co-fermentation of pentoses and hexoses by Escherichia coli JU15. Industrial Crops and Products, 2022, 177, 114519.	2.5	11
6	The physicomechanical and thermal properties of Algerian Aleppo pine (Pinus halepensis) wood as a component of sandwich panels. IForest, 2022, 15, 106-111.	0.5	0
7	Bio-Refinery Potential of Enset/Ensete ventricosum/Fiber Bundle Using Non-catalyzed and Alkali Catalyzed Hydrothermal Pretreatment. Waste and Biomass Valorization, 2021, 12, 663-672.	1.8	11
8	Eucalyptus globulus Stumps Bark: Chemical and Anatomical Characterization Under a Valorisation Perspective. Waste and Biomass Valorization, 2021, 12, 1253-1265.	1.8	11
9	Life Cycle Assessment of Maritime Pine Wood: A Portuguese Case Study. Journal of Sustainable Forestry, 2021, 40, 431-445.	0.6	6
10	Chemical composition of leaf cutin in six Quercus suber provenances. Phytochemistry, 2021, 181, 112570.	1.4	8
11	Composition and antioxidant properties of extracts from Douglas fir bark. Holzforschung, 2021, 75, 677-687.	0.9	7
12	Evaluation of FT-Raman and FTIR-ATR spectroscopy for the quality evaluation of <i>Lavandula</i> spp. Honey. Open Agriculture, 2021, 6, 47-56.	0.7	9
13	Delignification of Cistus ladanifer Biomass by Organosolv and Alkali Processes. Energies, 2021, 14, 1127.	1.6	17
14	Phytochemical characterization of phloem in maritime pine and stone pine in three sites in Portugal. Heliyon, 2021, 7, e06718.	1.4	9
15	Chemical composition and cellular structure of cork from Agonandra brasiliensis from the Brazilian Cerrado. European Journal of Wood and Wood Products, 2021, 79, 1469-1478.	1.3	0
16	Cutin extraction and composition determined under differing depolymerisation conditions in cork oak leaves. Phytochemical Analysis, 2021, , .	1.2	0
17	Quercus rotundifolia Bark as a Source of Polar Extracts: Structural and Chemical Characterization. Forests, 2021, 12, 1160.	0.9	14
18	State-of-the-Art Char Production with a Focus on Bark Feedstocks: Processes, Design, and Applications. Processes, 2021, 9, 87.	1.3	14

#	Article	IF	CITATIONS
19	Wood Density and Ring Width in Quercus rotundifolia Trees in Southern Portugal. Forests, 2021, 12, 1499.	0.9	5
20	Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Conversion and Biorefinery, 2020, 10, 175-188.	2.9	122
21	Cistus ladanifer as a source of chemicals: structural and chemical characterization. Biomass Conversion and Biorefinery, 2020, 10, 325-337.	2.9	12
22	Quercus cerris extracts obtained by distinct separation methods and solvents: Total and friedelin extraction yields, and chemical similarity analysis by multidimensional scaling. Separation and Purification Technology, 2020, 232, 115924.	3.9	11
23	The influence of water on the thermophysical properties of 1-ethyl-3-methylimidazolium acetate. Journal of Molecular Liquids, 2020, 297, 111925.	2.3	15
24	Characterization of Hakea sericea Fruits Regarding Chemical Composition and Extract Properties. Waste and Biomass Valorization, 2020, 11, 4859-4870.	1.8	6
25	Optimization of the supercritical fluid extraction of Quercus cerris cork towards extraction yield and selectivity to friedelin. Separation and Purification Technology, 2020, 238, 116395.	3.9	9
26	Chemical characterization, bioactive and fuel properties of waste cork and phloem fractions from Quercus cerris L. bark. Industrial Crops and Products, 2020, 157, 112909.	2.5	19
27	An extensive study on the chemical diversity of lipophilic extractives from Eucalyptus globulus wood. Phytochemistry, 2020, 180, 112520.	1.4	13
28	Variation in the Phenolic Composition of Cork Stoppers from Different Geographical Origins. Journal of Agricultural and Food Chemistry, 2020, 68, 14970-14977.	2.4	6
29	<i>In Vitro</i> Screening for Acetylcholinesterase Inhibition and Antioxidant Activity of <i>Quercus suber</i> Cork and Corkback Extracts. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-8.	0.5	14
30	Pyrolysis kinetics and estimation of chemical composition of Quercus cerris cork. Biomass Conversion and Biorefinery, 2020, , 1.	2.9	6
31	Chemical Composition of Cuticular Waxes and Pigments and Morphology of Leaves of Quercus suber Trees of Different Provenance. Plants, 2020, 9, 1165.	1.6	17
32	Lignin from Tree Barks: Chemical Structure and Valorization. ChemSusChem, 2020, 13, 4537-4547.	3.6	33
33	Fractionation and valorization of industrial bark residues by autohydrolysis and enzymatic saccharification. Bioresource Technology Reports, 2020, 11, 100441.	1.5	13
34	Cork oak and climate change: Disentangling drought effects on cork chemical composition. Scientific Reports, 2020, 10, 7800.	1.6	20
35	Structural changes in lignin of thermally treated eucalyptus wood. Journal of Wood Chemistry and Technology, 2020, 40, 258-268.	0.9	14
36	Bark residues valorization potential regarding antioxidant and antimicrobial extracts. Wood Science and Technology, 2020, 54, 559-585.	1.4	26

#	Article	IF	CITATIONS
37	Valorization of lignocellulosic residues from the olive oil industry by production of lignin, glucose and functional sugars. Bioresource Technology, 2019, 292, 121936.	4.8	53
38	Study of two cork species as natural biosorbents for five selected pesticides in water. Heliyon, 2019, 5, e01189.	1.4	20
39	A methodological approach for the simultaneous quantification of glycerol and fatty acids from cork suberin in a single GC run. Phytochemical Analysis, 2019, 30, 687-699.	1.2	8
40	Distillery Residues from Cistus ladanifer (Rockrose) as Feedstock for the Production of Added-Value Phenolic Compounds and Hemicellulosic Oligosaccharides. Bioenergy Research, 2019, 12, 347-358.	2.2	19
41	Hydroxystilbene Glucosides Are Incorporated into Norway Spruce Bark Lignin. Plant Physiology, 2019, 180, 1310-1321.	2.3	43
42	The effect of different pre-treatments to improve delignification of eucalypt stumps in a biorefinery context. Bioresource Technology Reports, 2019, 6, 89-95.	1.5	13
43	Chemical characterization of cork, phloem and wood from different Quercus suber provenances and trees. Heliyon, 2019, 5, e02910.	1.4	18
44	Cork rings suggest how to manage Quercus suber to mitigate the effects of climate changes. Agricultural and Forest Meteorology, 2019, 266-267, 12-19.	1.9	15
45	Influence of cambial age on the bark structure of Douglas-fir. Wood Science and Technology, 2019, 53, 191-210.	1.4	8
46	Hydrothermal Treatments of Cistus ladanifer Industrial Residues Obtained from Essential Oil Distilleries. Waste and Biomass Valorization, 2019, 10, 1303-1310.	1.8	12
47	Production and characterization of particleboards from cork-rich Quercus cerris bark. European Journal of Wood and Wood Products, 2018, 76, 989-997.	1.3	7
48	Screening of the Antioxidant and Enzyme Inhibition Potentials of Portuguese Pimpinella anisum L. Seeds by GC-MS. Food Analytical Methods, 2018, 11, 2645-2656.	1.3	31
49	Cynara cardunculus L. as a biomass and multi-purpose crop: A review of 30 years of research. Biomass and Bioenergy, 2018, 109, 257-275.	2.9	116
50	Effect of a Drought on Cork Growth Along the Production Cycle. Climate Change Management, 2018, , 127-136.	0.6	2
51	Membrane separation and characterisation of lignin and its derived products obtained by a mild ethanol organosolv treatment of rice straw. Process Biochemistry, 2018, 65, 136-145.	1.8	29
52	Variation of cork quality for wine stoppers across the production regions in Portugal. European Journal of Wood and Wood Products, 2018, 76, 123-132.	1.3	19
53	Properties of multilayered sandwich panels with an agglomerated cork core for interior applications in buildings. European Journal of Wood and Wood Products, 2018, 76, 143-153.	1.3	13
54	Chemical and anatomical characterization, and antioxidant properties of barks from 11 Eucalyptus species. European Journal of Wood and Wood Products, 2018, 76, 783-792.	1.3	21

#	Article	IF	CITATIONS
55	Natural durability assessment of thermo-modified young wood of eucalyptus. Maderas: Ciencia Y Tecnologia, 2018, , 0-0.	0.7	3
56	An integrated characterization of Picea abies industrial bark regarding chemical composition, thermal properties and polar extracts activity. PLoS ONE, 2018, 13, e0208270.	1.1	34
57	Transcriptional profiling of cork oak phellogenic cells isolated by laser microdissection. Planta, 2018, 247, 317-338.	1.6	46
58	Juvenile Wood Characterization of Eucalyptus botryoides and E. maculata by using SilviScan. BioResources, 2018, 13, .	0.5	2
59	Potential of Mild Torrefaction for Upgrading the Wood Energy Value of Different Eucalyptus Species. Forests, 2018, 9, 535.	0.9	9
60	Chemical composition of lipophilic extractives from six Eucalyptus barks. Wood Science and Technology, 2018, 52, 1685-1699.	1.4	11
61	Chemical characterization, hardness and termite resistance of Quercus cerris heartwood from Kosovo. Maderas: Ciencia Y Tecnologia, 2018, , 0-0.	0.7	1
62	Age Variation of Douglas-Fir Bark Chemical Composition. Journal of Wood Chemistry and Technology, 2018, 38, 385-396.	0.9	8
63	Optimization of ethanol-alkali delignification of false banana (Ensete ventricosum) fibers for pulp production using response surface methodology. Industrial Crops and Products, 2018, 126, 426-433.	2.5	14
64	Chemical composition and cellular structure of ponytail palm (Beaucarnea recurvata) cork. Industrial Crops and Products, 2018, 124, 845-855.	2.5	12
65	Pattern recognition of cardoon oil from different large-scale field trials. Industrial Crops and Products, 2018, 118, 236-245.	2.5	10
66	Variation of Ring Width and Wood Density in Two Unmanaged Stands of the Mediterranean Oak Quercus faginea. Forests, 2018, 9, 44.	0.9	9
67	Potential of Eucalyptus globulus industrial bark as a biorefinery feedstock: Chemical and fuel characterization. Industrial Crops and Products, 2018, 123, 262-270.	2.5	62
68	Characterization of crop residues from false banana /Ensete ventricosum/ in Ethiopia in view of a full-resource valorization. PLoS ONE, 2018, 13, e0199422.	1.1	35
69	Chemical composition of barks from Quercus faginea trees and characterization of their lipophilic and polar extracts. PLoS ONE, 2018, 13, e0197135.	1.1	35
70	Analysis of variables influencing tree cork caliper in two consecutive cork extractions using cork growth index modelling. Agroforestry Systems, 2017, 91, 221-237.	0.9	17
71	Performance of Expanded High-Density Cork Agglomerates. Journal of Materials in Civil Engineering, 2017, 29, 04016198.	1.3	3
72	Effect of Rice Husk Torrefaction on Syngas Production and Quality. Energy & Fuels, 2017, 31, 5183-5192.	2.5	20

#	Article	IF	CITATIONS
73	Improvement of gasification performance of Eucalyptus globulus stumps with torrefaction and densification pre-treatments. Fuel, 2017, 206, 289-299.	3.4	51
74	Experimental and modeling study of supercritical CO2 extraction of Quercus cerris cork: Influence of ethanol and particle size on extraction kinetics and selectivity to friedelin. Separation and Purification Technology, 2017, 187, 34-45.	3.9	27
75	Chemical effects of a mild torrefaction on the wood of eight <i>Eucalyptus</i> species. Holzforschung, 2017, 71, 291-298.	0.9	11
76	Heat-treated wood as chromium adsorption material. European Journal of Wood and Wood Products, 2017, 75, 903-909.	1.3	8
77	A generic platform for hyperspectral mapping of wood. Wood Science and Technology, 2017, 51, 887-907.	1.4	9
78	Cork of Douglas-fir bark: Impact of structural and anatomical features on usage. Industrial Crops and Products, 2017, 99, 135-141.	2.5	11
79	Steam Explosion as a Pretreatment of <i>Cynara cardunculus</i> Prior to Delignification. Industrial & Engineering Chemistry Research, 2017, 56, 424-433.	1.8	22
80	Characterization of Douglas-fir grown in Portugal: heartwood, sapwood, bark, ring width and taper. European Journal of Forest Research, 2017, 136, 597-607.	1.1	11
81	Optimizing Douglas-fir bark liquefaction in mixtures of glycerol and polyethylene glycol and KOH. Holzforschung, 2017, 72, 25-30.	0.9	9
82	Pinewood nematode population growth in relation to pine phloem chemical composition. Plant Pathology, 2017, 66, 856-864.	1.2	15
83	Characterization of <i>Betula pendula</i> Outer Bark Regarding Cork and Phloem Components at Chemical and Structural Levels in View of Biorefinery Integration. Journal of Wood Chemistry and Technology, 2017, 37, 10-25.	0.9	35
84	Cork Liquefaction for Polyurethane Foam Production. BioResources, 2017, 12, .	0.5	19
85	Influence of Heartwood on Wood Density and Pulp Properties Explained by Machine Learning Techniques. Forests, 2017, 8, 20.	0.9	7
86	Cork-Containing Barks—A Review. Frontiers in Materials, 2017, 3, .	1.2	65
87	Fractioning of bark of Pinus pinea by milling and chemical characterization of the different fractions. Maderas: Ciencia Y Tecnologia, 2017, , 0-0.	0.7	9
88	ECOLOGIC FEATURES OF WOOD ANATOMY OF Casearia sylvestris SW (SALICACEAE) IN THREE BRAZILIAN ECOSYSTEMS. Cerne, 2017, 23, 445-453.	0.9	2
89	Chemical characterization and extractives composition of heartwood and sapwood from Quercus faginea. PLoS ONE, 2017, 12, e0179268.	1.1	48
90	Bark anatomy, chemical composition and ethanol-water extract composition of Anadenanthera peregrina and Anadenanthera colubrina. PLoS ONE, 2017, 12, e0189263.	1.1	21

#	Article	IF	CITATIONS
91	Bark Characterisation of the Brazilian Hardwood Goupia glabra in Terms of Its Valorisation. BioResources, 2016, 11, .	0.5	12
92	Fibre Morphological Characteristics of Kraft Pulps of Acacia melanoxylon Estimated by NIR-PLS-R Models. Materials, 2016, 9, 8.	1.3	23
93	Lignin Composition and Structure Differs between Xylem, Phloem and Phellem in Quercus suber L Frontiers in Plant Science, 2016, 7, 1612.	1.7	104
94	Physical and mechanical properties of heat treated wood from Aspidosperma populifolium, dipteryx odorata and mimosa scabrella. Maderas: Ciencia Y Tecnologia, 2016, , 0-0.	0.7	7
95	The influence of season on carbon allocation to suberin and other stem components of cork oak saplings. Tree Physiology, 2016, 37, 165-172.	1.4	2
96	Prediction of blackwood Kraft pulps yields with wood NIR–PLSR models. Wood Science and Technology, 2016, 50, 1307-1322.	1.4	6
97	Effect of a mild torrefaction for production of eucalypt wood briquettes under different compression pressures. Biomass and Bioenergy, 2016, 90, 181-186.	2.9	39
98	Chemical and structural characterization of the bark of Albizia niopoides trees from the Amazon. Wood Science and Technology, 2016, 50, 677-692.	1.4	13
99	Strength properties and dimensional stability of particleboards with different proportions of thermally treated recycled pine particles. Holzforschung, 2016, 70, 467-474.	0.9	10
100	Chemical and cellular features of virgin and reproduction cork from Quercus variabilis. Industrial Crops and Products, 2016, 94, 638-648.	2.5	31
101	Cellular structure and chemical composition of cork from Plathymenia reticulata occurring in the Brazilian Cerrado. Industrial Crops and Products, 2016, 90, 65-75.	2.5	26
102	Industrial valorization of Quercus cerris bark: Pilot scale fractionation. Industrial Crops and Products, 2016, 92, 42-49.	2.5	17
103	Cork as a building material: a review. European Journal of Wood and Wood Products, 2016, 74, 775-791.	1.3	67
104	Chemical composition and cellular structure of corks from Quercus suber trees planted in Bulgaria and Turkey. Wood Science and Technology, 2016, 50, 1261-1276.	1.4	25
105	Bioassay-guided fractionation, GC–MS identification and in vitro evaluation of antioxidant and antimicrobial activities of bioactive compounds from Eucalyptus globulus stump wood methanolic extract. Industrial Crops and Products, 2016, 91, 97-103.	2.5	15
106	The Potential of Hydrothermally Pretreated Industrial Barks From <i>E. globulus</i> as a Feedstock for Pulp Production. Journal of Wood Chemistry and Technology, 2016, 36, 383-392.	0.9	18
107	Sensitivity of cork growth to drought events: insights from a 24-year chronology. Climatic Change, 2016, 137, 261-274.	1.7	34
108	Cork structural discontinuities studied with X-ray microtomography. Holzforschung, 2016, 70, 87-94.	0.9	11

#	Article	IF	CITATIONS
109	Ferulates and lignin structural composition in cork. Holzforschung, 2016, 70, 275-289.	0.9	53
110	Modeling and optimization of laboratory-scale conditioning of Jatropha curcas L. seeds for oil expression. Industrial Crops and Products, 2016, 83, 614-619.	2.5	19
111	Chemical characterization of cork and phloem from Douglas fir outer bark. Holzforschung, 2016, 70, 475-483.	0.9	34
112	Chemical characterization of the bark of <i>Eucalyptus urophylla</i> hybrids in view of their valorization in biorefineries. Holzforschung, 2016, 70, 819-828.	0.9	28
113	<i>Copaifera langsdorffii</i> Bark as a Source of Chemicals: Structural and Chemical Characterization. Journal of Wood Chemistry and Technology, 2016, 36, 305-317.	0.9	21
114	The bark of Eucalyptus sideroxylon as a source of phenolic extracts with anti-oxidant properties. Industrial Crops and Products, 2016, 82, 81-87.	2.5	52
115	Assessment of the bifidogenic effect of substituted xylo-oligosaccharides obtained from corn straw. Carbohydrate Polymers, 2016, 136, 466-473.	5.1	59
116	The effect of eucalypt tree overaging on pulping and paper properties. European Journal of Wood and Wood Products, 2016, 74, 101-108.	1.3	5
117	Natural variability of surface porosity of wine cork stoppers of different commercial classes. Oeno One, 2016, 46, 331.	0.7	7
118	Age trends and within-site effects in wood density and radial growth in Quercus faginea mature trees. Forest Systems, 2016, 25, 053.	0.1	9
119	Short communication. Tomography as a method to study umbrella pine (Pinus pinea) cones and nuts. Forest Systems, 2016, 25, eSC10.	0.1	6
120	Fractionation of Hemicelluloses and Lignin from Rice Straw by Combining Autohydrolysis and Optimised Mild Organosolv Delignification. BioResources, 2015, 10, .	0.5	42
121	Variation of Wood Pulping and Bleached Pulp Properties Along the Stem in Mature Eucalyptus globulus Trees. BioResources, 2015, 10, .	0.5	8
122	The Rationale behind Cork Properties: A Review of Structure and Chemistry. BioResources, 2015, 10, .	0.5	128
123	Prediction of mechanical strength of cork under compression using machine learning techniques. Materials and Design, 2015, 82, 304-311.	3.3	30
124	Influence of cork defects in the oxygen ingress through wine stoppers: Insights with X-ray tomography. Journal of Food Engineering, 2015, 165, 66-73.	2.7	17
125	Selective fractioning of Pseudotsuga menziesii bark and chemical characterization in view of an integrated valorization. Industrial Crops and Products, 2015, 74, 998-1007.	2.5	51
126	Characterization of lignin in heartwood, sapwood and bark from Tectona grandis using Py–GC–MS/FID. Wood Science and Technology, 2015, 49, 159-175.	1.4	54

#	Article	IF	CITATIONS
127	Chemical composition and kraft pulping potential of 12 eucalypt species. Industrial Crops and Products, 2015, 66, 89-95.	2.5	48
128	Prediction of tension properties of cork from its physical properties using neural networks. European Journal of Wood and Wood Products, 2015, 73, 347-356.	1.3	9
129	Isolation and Structural Characterization of Lignin from Cardoon (Cynara cardunculus L.) Stalks. Bioenergy Research, 2015, 8, 1946-1955.	2.2	13
130	Biomass production of four Cynara cardunculus clones and lignin composition analysis. Biomass and Bioenergy, 2015, 76, 86-95.	2.9	24
131	Mechanical strength properties of innovative sandwich panels with expanded cork agglomerates. European Journal of Wood and Wood Products, 2015, 73, 465-473.	1.3	15
132	Anatomical variation of teakwood from unmanaged mature plantations in East Timor. Journal of Wood Science, 2015, 61, 326-333.	0.9	14
133	Prospective pathway for a green and enhanced friedelin production through supercritical fluid extraction of Quercus cerris cork. Journal of Supercritical Fluids, 2015, 97, 247-255.	1.6	29
134	Storage stability of Jatropha curcas L. oil naturally rich in gamma-tocopherol. Industrial Crops and Products, 2015, 64, 188-193.	2.5	18
135	Heavy metals removal in aqueous environments using bark as a biosorbent. International Journal of Environmental Science and Technology, 2015, 12, 391-404.	1.8	92
136	Classification modeling based on surface porosity for the grading of natural cork stoppers for quality wines. Food and Bioproducts Processing, 2015, 93, 69-76.	1.8	9
137	Mechanical behavior of multilayered sandwich panels of wood veneer and a core of cork agglomerates. Materials & Design, 2015, 65, 627-636.	5.1	51
138	Using Apparent Density of Paper from Hardwood Kraft Pulps to Predict Sheet Properties, based on Unsupervised Classification and Multivariable Regression Techniques. BioResources, 2015, 10, .	0.5	7
139	Earlywood vessel features in Quercus faginea: relationship between ring width and wood density at two sites in Portugal. IForest, 2015, 8, 866-873.	0.5	4
140	Estimation of Acacia melanoxylon unbleached Kraft pulp brightness by NIR spectroscopy. Forest Systems, 2015, 24, eRC03.	0.1	8
141	Forest Resources and Sawmill Structure of Kosovo: State of the Art and Perspectives. Drvna Industrija, 2014, 65, 323-327.	0.3	1
142	Kappa Number Prediction of Acacia melanoxylon Unbleached Kraft Pulps using NIR-PLSR Models with a Narrow Interval of Variation. BioResources, 2014, 9, .	0.5	8
143	Modeling and Optimization of Eucalyptus globulus Bark and Wood Delignification using Response Surface Methodology. BioResources, 2014, 9, .	0.5	22
144	Vacuum physics applied to the transport of gases through cork. Vacuum, 2014, 109, 397-400.	1.6	4

#	Article	IF	CITATIONS
145	Pattern recognition as a tool to discriminate softwood and hardwood bark fractions with different particle size. Wood Science and Technology, 2014, 48, 1197-1211.	1.4	9
146	Age trends in the wood anatomy of Quercus faginea. IAWA Journal, 2014, 35, 293-306.	2.7	9
147	Morphological, mechanical, and optical properties of cypress papers. Holzforschung, 2014, 68, 867-874.	0.9	4
148	Dissolving grade eco-clean cellulose pulps by integrated fractionation of cardoon (Cynara) Tj ETQq0 0 0 rgBT /Ov	verlock 10 2.7	Tf 50 622 Td
149	Thermal behaviour of cork and cork components. Thermochimica Acta, 2014, 582, 94-100.	1.2	64
150	Comparison between heat treated sapwood and heartwood from Pinus pinaster. European Journal of Wood and Wood Products, 2014, 72, 53-60.	1.3	23
151	Early assessment of density features for 19 Eucalyptus species using X-ray microdensitometry in a perspective of potential biomass production. Wood Science and Technology, 2014, 48, 37-49.	1.4	20
152	Family effects in heartwood content of Eucalyptus globulus L European Journal of Forest Research, 2014, 133, 81-87.	1.1	4
153	Variation in wood density and ring width in Acacia melanoxylon at four sites in Portugal. European Journal of Forest Research, 2014, 133, 31-39.	1.1	7

154	Aliphatic bio-oils from corks: A Py–GC/MS study. Journal of Analytical and Applied Pyrolysis, 2014, 109, 29-40.	2.6	19
155	Hydrothermal production and gel filtration purification of xylo-oligosaccharides from rice straw. Industrial Crops and Products, 2014, 62, 460-465.	2.5	68

156	Comparison of good- and bad-quality cork: application of high-throughput sequencing of phellogenic tissue. Journal of Experimental Botany, 2014, 65, 4887-4905.	2.4	42
157	Improvement of termite resistance, dimensional stability and mechanical properties of pine wood by paraffin impregnation. European Journal of Wood and Wood Products, 2014, 72, 609-615.	1.3	31
158	Variability of the compression properties of cork. Wood Science and Technology, 2014, 48, 937-948.	1.4	46
159	Circumferential variation of heartwood and stem quality in maritime pine stems. European Journal of Forest Research, 2014, 133, 1007-1014.	1.1	1
160	Variation of wood density and mechanical properties of blackwood (Acacia melanoxylon R. Br.). Materials & Design, 2014, 56, 975-980.	5.1	48
161	A property rights-based analysis of the illegal logging for fuelwood in Kosovo. Biomass and Bioenergy, 2014, 67, 425-434.	2.9	7

162Evaluation on paper making potential of nine Eucalyptus species based on wood anatomical features.2.562Industrial Crops and Products, 2014, 54, 327-334.2.562

#	Article	IF	CITATIONS
163	Monitoring intra-annual cambial activity based on the periodic collection of twigs – A feasibility study. Dendrochronologia, 2014, 32, 162-170.	1.0	5
164	Effect of density on the compression behaviour of cork. Materials & Design, 2014, 53, 1089-1096.	5.1	72
165	Stumps of Eucalyptus globulus as a Source of Antioxidant and Antimicrobial Polyphenols. Molecules, 2014, 19, 16428-16446.	1.7	61
166	Eucalyptus globulus Stumpwood as a Raw Material for Pulping. BioResources, 2014, 9, .	0.5	19
167	Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Industrial Crops and Products, 2013, 41, 299-305.	2.5	113
168	Characterisation and hydrothermal processing of corn straw towards the selective fractionation of hemicelluloses. Industrial Crops and Products, 2013, 50, 145-153.	2.5	77
169	The chemical composition of exhausted coffee waste. Industrial Crops and Products, 2013, 50, 423-429.	2.5	220
170	Characterisation and fractioning of Tectona grandis bark in view of its valorisation as a biorefinery raw-material. Industrial Crops and Products, 2013, 50, 166-175.	2.5	41
171	Lignin monomeric composition of corks from the barks of Betula pendula, Quercus suber and Quercus cerris determined by Py–GC–MS/FID. Journal of Analytical and Applied Pyrolysis, 2013, 100, 88-94.	2.6	52
172	Permeability of Cork for Water and Ethanol. Journal of Agricultural and Food Chemistry, 2013, 61, 9672-9679.	2.4	33
173	Variability in oil content and composition and storage stability of seeds from Jatropha curcas L. grown in Mozambique. Industrial Crops and Products, 2013, 50, 828-837.	2.5	27
174	Gas transport through cork: Modelling gas permeation based on the morphology of a natural polymer material. Journal of Membrane Science, 2013, 428, 52-62.	4.1	26
175	Drying kinetics of cork planks in a cork pile in the field. Food and Bioproducts Processing, 2013, 91, 14-22.	1.8	14
176	High-grade sulfur-free cellulose fibers by pre-hydrolysis and ethanol-alkali delignification of giant reed (Arundo donax L.) stems. Industrial Crops and Products, 2013, 43, 623-630.	2.5	40
177	Py-GC/MS(FID) assessed behavior of polysaccharides during kraft delignification of Eucalyptus globulus heartwood and sapwood. Journal of Analytical and Applied Pyrolysis, 2013, 101, 142-149.	2.6	18
178	Chemical characterization of different granulometric fractions of grape stalks waste. Industrial Crops and Products, 2013, 50, 494-500.	2.5	48
179	Cellular structure and chemical composition of cork from the Chinese cork oak (Quercus variabilis). Journal of Wood Science, 2013, 59, 1-9.	0.9	50
180	Variation of Lignin Monomeric Composition During Kraft Pulping of <i>Eucalyptus globulus</i> Heartwood and Sapwood. Journal of Wood Chemistry and Technology, 2013, 33, 1-18.	0.9	28

#	Article	IF	CITATIONS
181	Anatomy and Development of the Endodermis and Phellem of <i>Quercus suber</i> L. Roots. Microscopy and Microanalysis, 2013, 19, 525-534.	0.2	17
182	Kinetics of Oxygen Ingress into Wine Bottles Closed with Natural Cork Stoppers of Different Qualities. American Journal of Enology and Viticulture, 2013, 64, 395-399.	0.9	17
183	Thermal Conversion of Cynara cardunculus L. and Mixtures with Eucalyptus globulus by Fluidized-Bed Combustion and Gasification. Energy & Fuels, 2013, 27, 6725-6737.	2.5	19
184	Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas: Ciencia Y Tecnologia, 2013, , 0-0.	0.7	70
185	Comparison of Py-GC/FID and Wet Chemistry Analysis for Lignin Determination in Wood and Pulps from Eucalyptus globulus. BioResources, 2013, 8, .	0.5	16
186	Variability of the Chemical Composition of Cork. BioResources, 2013, 8, .	0.5	72
187	Allocation of 14C assimilated in late spring to tissue and biochemical stem components of cork oak (Quercus suber L.) over the seasons. Tree Physiology, 2012, 32, 313-325.	1.4	8
188	Estimation of Wood Basic Density of <i>Acacia Melanoxylon</i> (R. Br.) by near Infrared Spectroscopy. Journal of Near Infrared Spectroscopy, 2012, 20, 267-274.	0.8	31
189	Modelling of Gas Permeation Based on the Morphology of a Natural Polymer Material. Procedia Engineering, 2012, 44, 529-531.	1.2	0
190	Influence on pulping yield and pulp properties of wood density of Acacia melanoxylon. Journal of Wood Science, 2012, 58, 479-486.	0.9	35
191	Reactivity of syringyl and guaiacyl lignin units and delignification kinetics in the kraft pulping of Eucalyptus globulus wood using Py-GC–MS/FID. Bioresource Technology, 2012, 123, 296-302.	4.8	36
192	REMOVAL OF CHROMIUM (VI) IN AQUEOUS ENVIRONMENTS USING CORK AND HEAT-TREATED CORK SAMPLES FROM QUERCUS CERRIS AND QUERCUS SUBER. BioResources, 2012, 7, .	0.5	17
193	Variation of extractives content in heartwood and sapwood of Eucalyptus globulus trees. Wood Science and Technology, 2012, 46, 709-719.	1.4	52
194	Xylose production from giant reed (Arundo donax L.): Modeling and optimization of dilute acid hydrolysis. Carbohydrate Polymers, 2012, 87, 210-217.	5.1	64
195	Properties of cork oak wood related to solid wood flooring performance. Construction and Building Materials, 2012, 30, 569-573.	3.2	10
196	Temperature-induced structural and chemical changes in cork from Quercus cerris. Industrial Crops and Products, 2012, 37, 508-513.	2.5	25
197	Chemical characterization of barks from Picea abies and Pinus sylvestris after fractioning into different particle sizes. Industrial Crops and Products, 2012, 36, 395-400.	2.5	119
198	Study of thermochemical treatments of cork in the 150–400°C range using colour analysis and FTIR spectroscopy. Industrial Crops and Products, 2012, 38, 132-138.	2.5	47

#	Article	IF	CITATIONS
199	Chemical and fuel properties of stumps biomass from Eucalyptus globulus plantations. Industrial Crops and Products, 2012, 39, 12-16.	2.5	42
200	Growth rate and ring width variability of teak, <i>Tectona grandis</i> (Verbenaceae) in an unmanaged forest in East Timor Revista De Biologia Tropical, 2012, 60, 483-94.	0.1	11
201	Cork oak (Quercus suber L.) wood hygroscopic properties and dimensional stability. Forest Systems, 2012, 21, 355.	0.1	3
202	Wood and bark fiber characteristics of Acacia melanoxylon and comparison to Eucalyptus globules. Cerne, 2011, 17, 61-68.	0.9	10
203	Large scale cultivation of Cynara cardunculus L. for biomass production—A case study. Industrial Crops and Products, 2011, 33, 1-6.	2.5	88
204	The cellular structure of cork from Quercus cerris var. cerris bark in a materials' perspective. Industrial Crops and Products, 2011, 34, 929-936.	2.5	40
205	Modeling of sapwood and heartwood delignification kinetics of Eucalyptus globulus using consecutive and simultaneous approaches. Journal of Wood Science, 2011, 57, 20-26.	0.9	11
206	Wood properties of teak (Tectona grandis) from a mature unmanaged stand in East Timor. Journal of Wood Science, 2011, 57, 171-178.	0.9	72
207	Stem modeling and simulation of conversion of cork oak stems for quality wood products. European Journal of Forest Research, 2011, 130, 745-751.	1.1	8
208	Vessel size and number are contributors to define wood density in cork oak. European Journal of Forest Research, 2011, 130, 1023-1029.	1.1	18
209	Zugfestigkeitseigenschaften von Kork inÂaxialer Richtung und Einfluss vonÂPorositä Dichte, Qualitä undÂradialeÂLage. European Journal of Wood and Wood Products, 2011, 69, 85-91.	1.3	30
210	Properties of furfurylated wood (PinusÂpinaster). European Journal of Wood and Wood Products, 2011, 69, 521-525.	1.3	97
211	Characterization of radial bending properties of cork. European Journal of Wood and Wood Products, 2011, 69, 557-563.	1.3	17
212	Chemistry and ecotoxicity of heat-treated pine wood extractives. Wood Science and Technology, 2011, 45, 661-676.	1.4	81
213	Variation in wood density components within and between Quercus faginea trees. Canadian Journal of Forest Research, 2011, 41, 1212-1219.	0.8	9
214	Biorefinery of Energy Crop Cardoon(Cynara cardunculus l.)-Hydrolytic Xylose Production as Entry Point to Complex Fractionation Scheme. Journal of Chemical Engineering & Process Technology, 2011, 02, .	0.1	15
215	Analyse des modèles spatiaux de dépérissement du chêne dans les forêts de chêne liège dans les conditions méditerranéennes. Annals of Forest Science, 2010, 67, 204-204.	0.8	82
216	The chemical composition of cork and phloem in the rhytidome of Quercus cerris bark. Industrial Crops and Products, 2010, 31, 417-422.	2.5	102

#	Article	IF	CITATIONS
217	Response surface modeling and optimization of biodiesel production from <i>Cynara cardunculus</i> oil. European Journal of Lipid Science and Technology, 2010, 112, 310-320.	1.0	46
218	Tensile properties of cork in the tangential direction: Variation with quality, porosity, density and radial position in the cork plank. Materials & Design, 2010, 31, 2085-2090.	5.1	36
219	Molybdo-vanado-phosphate heteropolyanion catalyzed pulp ozonation in acetone/water solution. Part 1. Effect of process variables. Bioresource Technology, 2010, 101, 4616-4621.	4.8	3
220	Molybdo-vanado-phosphate heteropolyanion catalyzed pulp ozonation in acetone/water solution. Part 2. Catalyst re-oxidation. Bioresource Technology, 2010, 101, 9330-9334.	4.8	3
221	Suberized Cell Walls of Cork from Cork Oak Differ from Other Species. Microscopy and Microanalysis, 2010, 16, 569-575.	0.2	26
222	Influence of cutting direction of cork planks on the quality and porosity characteristics of natural cork stoppers. Forest Systems, 2010, 19, 51.	0.1	9
223	Characterization of Cork Oak (Quercus Suber) Wood Anatomy. IAWA Journal, 2009, 30, 149-161.	2.7	29
224	Characterization of hairs and pappi from Cynara cardunculus capitula and their suitability for paper production. Industrial Crops and Products, 2009, 29, 116-125.	2.5	47
225	Variation of heartwood and sapwood in 18-year-old Eucalyptus globulus trees grown with different spacings. Trees - Structure and Function, 2009, 23, 367-372.	0.9	22
226	Landscape dynamics in endangered cork oak woodlands in Southwestern Portugal (1958–2005). Agroforestry Systems, 2009, 77, 83-96.	0.9	47
227	Polyoxometalate catalyzed ozonation of chemical pulps in organic solvent media. Chemical Engineering Journal, 2009, 155, 380-387.	6.6	10
228	Impact of hexenuronic acids on xylanase-aided bio-bleaching of chemical pulps. Bioresource Technology, 2009, 100, 3069-3075.	4.8	26
229	Ultrastructural Observations Reveal the Presence of Channels between Cork Cells. Microscopy and Microanalysis, 2009, 15, 539-544.	0.2	19
230	Heat-induced colour changes of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Science and Technology, 2008, 42, 369-384.	1.4	153
231	Effect of quality, porosity and density on the compression properties of cork. European Journal of Wood and Wood Products, 2008, 66, 295-301.	1.3	63
232	Quality assessment of heat-treated wood by NIR spectroscopy. European Journal of Wood and Wood Products, 2008, 66, 323-332.	1.3	41
233	The influence of heartwood on the pulping properties of Acacia melanoxylon wood. Journal of Wood Science, 2008, 54, 464-469.	0.9	41
234	Cork oak (Quercus suber L.) wood growth and vessel characteristics variations in relation to climate and cork harvesting. European Journal of Forest Research, 2008, 127, 33-41.	1.1	41

#	Article	IF	CITATIONS
235	Effect of xylanases on peroxide bleachability of eucalypt (E. globulus) kraft pulp. Biochemical Engineering Journal, 2008, 40, 19-26.	1.8	26
236	Arundo donax L. reed: New perspectives for pulping and bleaching. 5. Ozone-based TCF bleaching of organosolv pulps. Bioresource Technology, 2008, 99, 472-478.	4.8	43
237	Kinetic Modeling of Breweryapos;s Spent Grain Autohydrolysis. Biotechnology Progress, 2008, 21, 233-243.	1.3	62
238	Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung, 2008, 62, 344-351.	0.9	169
239	Within-tree and between-tree variation of wood density components in cork oak trees in two sites in Portugal. Forestry, 2008, 81, 465-473.	1.2	29
240	Surface, thermal and other properties. , 2007, , 227-239.		0
241	The extraction of cork. , 2007, , 127-144.		3
242	Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus) Tj ETQq0 0 0 rgB	Г /Qyerloc 1.4	k 10 Tf 50 4
243	The formation and growth of cork. , 2007, , 7-31.		4
244	The structure of cork. , 2007, , 33-53.		10
245	The chemical composition of cork. , 2007, , 55-99.		10
246	The cork oak. , 2007, , 103-125.		5
247	The sustainable management of cork production. , 2007, , 145-160.		0
248	Macroscopic appearance and quality. , 2007, , 163-186.		1
249	Cork products and uses. , 2007, , 243-261.		61
250	Production of cork stoppers and discs. , 2007, , 263-288.		2
251	Cork agglomerates and composites. , 2007, , 289-303.		Ο
252	Wine and cork. , 2007, , 305-327.		3

#	Article	IF	CITATIONS
253	Influence of vision systems, black and white, colored and visual digitalization, in natural cork stopper quality estimation. Journal of the Science of Food and Agriculture, 2007, 87, 2222-2228.	1.7	17
254	Polysaccharide degradation during ozone-based TCF bleaching of non-wood organosolv pulps. Carbohydrate Polymers, 2007, 67, 275-281.	5.1	41
255	Xylanase pre-treatment of giant reed organosolv pulps: Direct bleaching effect and bleach boosting. Industrial Crops and Products, 2007, 25, 248-256.	2.5	24
256	Radial variation of wood density components and ring width in cork oak trees. Annals of Forest Science, 2007, 64, 211-218.	0.8	43
257	Heartwood and sapwood variation in Eucalyptus globulus Labill. trees at the end of rotation for pulp wood production. Annals of Forest Science, 2007, 64, 665-671.	0.8	29
258	Radial variation of vessel size and distribution in cork oak wood (Quercus suber L.). Wood Science and Technology, 2007, 41, 339-350.	1.4	43
259	NIR PLSR model selection for Kappa number prediction of maritime pine Kraft pulps. Wood Science and Technology, 2007, 41, 491-499.	1.4	23
260	The influence of irrigation and fertilization on heartwood and sapwood contents in 18-year-old Eucalyptus globulus trees. Canadian Journal of Forest Research, 2006, 36, 2675-2683.	0.8	27
261	Effect of fungal colonization on mechanical performance of cork. International Biodeterioration and Biodegradation, 2006, 57, 244-250.	1.9	13
262	Supplementation requirements of brewery's spent grain hydrolysate for biomass and xylitol production by Debaryomyces hansenii CCMI 941. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 646-654.	1.4	27
263	Simulated and realised industrial yields in sawing of maritime pine (Pinus pinaster Ait.). European Journal of Wood and Wood Products, 2006, 64, 30-36.	1.3	14
264	Within and between-tree variation in the biometry of wood rays and fibres in cork oak (Quercus) Tj ETQq0 0 0 rg	BT_/Overlo 1.4	ck 10 Tf 50 3
265	Analytical pyrolysis as a direct method to determine the lignin content in wood. Journal of Analytical and Applied Pyrolysis, 2006, 76, 209-213.	2.6	87
266	Isolation and comparative characterization of a Björkman lignin from the saponified cork of Douglas-fir bark. Journal of Analytical and Applied Pyrolysis, 2006, 77, 169-176.	2.6	38
267	Influence of raw-material and process variables in the kraft pulping of Cynara cardunculus L Industrial Crops and Products, 2006, 24, 160-165.	2.5	14
268	Evaluation of oil composition of some crops suitable for human nutrition. Industrial Crops and Products, 2006, 24, 75-78.	2.5	87
269	Within-Tree Variation in Wood Fibre Biometry And Basic Density of the Urograndis Eucalypt Hybrid (Eucalyptus Grandis × E. Urophylla). IAWA Journal, 2006, 27, 243-254.	2.7	25
270	Calibration of NIR to assess lignin composition (H/G ratio) in maritime pine wood using analytical pyrolysis as the reference method. Holzforschung, 2006, 60, 29-31.	0.9	61

#	Article	IF	CITATIONS
271	NIR PLSR results obtained by calibration with noisy, low-precision reference values: Are the results acceptable?. Holzforschung, 2006, 60, 402-408.	0.9	30
272	Papermaking fibers from giant reed (Arundo donax L.) by advanced ecologically friendly pulping and bleaching technologies. BioResources, 2006, 1, 45-61.	0.5	39
273	Evaluation of the detoxification of brewery's spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochemistry, 2005, 40, 1215-1223.	1.8	141
274	Arundo donax L. reed: new perspectives for pulping and bleaching. Part 4. Peroxide bleaching of organosolv pulps. Bioresource Technology, 2005, 96, 865-872.	4.8	38
275	Kinetics of polysaccharide degradation during ethanol–alkali delignification of giant reed—Part 1. Cellulose and xylan. Carbohydrate Polymers, 2005, 59, 435-442.	5.1	23
276	Kinetics of polysaccharide degradation during ethanol-alkali delignification of giant reed—Part 2. Minor carbohydrates and uronic acids. Carbohydrate Polymers, 2005, 61, 304-313.	5.1	9
277	Kinetics of organosolv delignification of fibre crop Arundo donax L. Industrial Crops and Products, 2005, 21, 203-210.	2.5	55
278	Pulping Yield and Delignification Kinetics of Heartwood and Sapwood of Maritime Pine. Journal of Wood Chemistry and Technology, 2005, 25, 217-230.	0.9	26
279	Within-tree variation of heartwood and ring width in maritime pine (Pinus pinaster Ait.). Forest Ecology and Management, 2005, 210, 81-89.	1.4	34
280	Mixed models to estimate tree oven-dried cork weight in Central and Southern Portugal. Forest Ecology and Management, 2005, 213, 117-132.	1.4	12
281	ANATOMICAL CHARACTERISATION AND VARIABILITY OF THE THISTLE CYNARA CARDUNCULUS IN VIEW OF PULPING POTENTIAL. IAWA Journal, 2004, 25, 217-230.	2.7	15
282	THE PERIDERM DEVELOPMENT IN QUERCUS SUBER. IAWA Journal, 2004, 25, 325-335.	2.7	76
283	NON-WOOD PRODUCTS Cork Oak. , 2004, , 613-620.		29
284	Uronic (hexenuronic) acid profile of ethanol–alkali delignification of giant reed Arundo donax L Cellulose, 2004, 11, 109-117.	2.4	13
285	Heartwood and sapwood development within maritime pine (Pinus pinaster Ait.) stems. Trees - Structure and Function, 2004, 18, 284-294.	0.9	56
286	Production of oligosaccharides by autohydrolysis of brewery's spent grain. Bioresource Technology, 2004, 91, 93-100.	4.8	238
287	Wood Chemistry in Relation to Quality. ChemInform, 2004, 35, no.	0.1	19
288	Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy, 2004, 36, 23-40.	1.2	1,054

#	Article	IF	CITATIONS
289	Genetic parameters of growth and wood quality traits inPicea abies. Scandinavian Journal of Forest Research, 2004, 19, 14-29.	0.5	171
290	Tree-ring structure and climatic effects in young Eucalyptus globulus Labill. grown at two Portuguese sites: preliminary results. Dendrochronologia, 2004, 21, 139-146.	1.0	8
291	Title is missing!. Molecular Breeding, 2003, 12, 157-167.	1.0	31
292	Variability of radial growth in cork oak adult trees under cork production. Forest Ecology and Management, 2003, 175, 239-246.	1.4	54
293	CLONAL AND SITE VARIATION OF VESSELS IN 7-YEAR-OLD EUCALYPTUS GLOBULUS. IAWA Journal, 2003, 24, 185-195.	2.7	31
294	THE EFFECT OF TREE SHELTER ON THE STEM ANATOMY OF CORK OAK (QUERCUS SUBER) PLANTS. IAWA Journal, 2003, 24, 385-395.	2.7	18
295	Kinetics of ASAM and Kraft Pulping of Eucalypt Wood (Eucalyptus globulus). Holzforschung, 2002, 56, 85-90.	0.9	25
296	Ethanol-Enhanced Alkaline Pulping of Arundo donax L. Reed: Influence of Solvent on Pulp Yield and Quality. Holzforschung, 2002, 56, 507-512.	0.9	12
297	Influence of climate on the seasonality of radial growth of cork oak during a cork production cycle. Annals of Forest Science, 2002, 59, 429-437.	0.8	56
298	Variation of pulpwood quality with provenances and site in Eucalyptus globulus. Annals of Forest Science, 2002, 59, 283-291.	0.8	52
299	Genetic control of pulp and timber properties in maritime pine (Pinus pinaster Ait.). Annals of Forest Science, 2002, 59, 563-575.	0.8	71
300	Influence of stem morphology on pulp and paper properties of Arundo donax L. reed. Industrial Crops and Products, 2002, 15, 77-83.	2.5	66
301	Glycerol and glyceryl esters of ï‰-hydroxyacids in cutins. Phytochemistry, 2002, 61, 205-215.	1.4	126
302	Carbohydrate behaviour of Arundo donax L. in ethanol–alkali medium of variable composition during organosolv delignification. Carbohydrate Polymers, 2002, 49, 331-336.	5.1	29
303	The effect of cork removal on the radial growth and phenology of young cork oak trees. Forest Ecology and Management, 2001, 141, 251-258.	1.4	32
304	Provenance and site variation of wood density in Eucalyptus globulus Labill. at harvest age and its relation to a non-destructive early assessment. Forest Ecology and Management, 2001, 149, 235-240.	1.4	35
305	A dendroclimatological approach to diameter growth in adult cork-oak trees under production. Trees - Structure and Function, 2001, 15, 438-443.	0.9	38
306	A study of variability of suberin composition in cork from Quercus suber L. using thermally assisted transmethylation GC–MS. Journal of Analytical and Applied Pyrolysis, 2001, 57, 45-55.	2.6	58

#	Article	IF	CITATIONS
307	Influence of tree eccentric growth on syringyl/guaiacyl ratio in Eucalyptus globulus wood lignin assessed by analytical pyrolysis. Journal of Analytical and Applied Pyrolysis, 2001, 58-59, 481-489.	2.6	70
308	Cynara cardunculus L. â \in " a new fibre crop for pulp and paper production. Industrial Crops and Products, 2001, 13, 1-10.	2.5	125
309	WITHIN AND BETWEEN-TREE VARIATION OF BARK CONTENT AND WOOD DENSITY OF EUCALYPTUS GLOBULUS IN COMMERCIAL PLANTATIONS. IAWA Journal, 2001, 22, 255-265.	2.7	43
310	Determination of Monosaccharide Composition of Eucalyptus globulus Wood by FTIR Spectroscopy. Holzforschung, 2001, 55, 265-269.	0.9	22
311	Fragmentation of Suberin and Composition of Aliphatic Monomers Released by Methanolysis of Cork from Quercus suber L.,Analysed by GC-MS, SEC and MALDI-MS. Holzforschung, 2001, 55, 487-493.	0.9	24
312	Methanolysis of bark suberins: analysis of glycerol and acid monomers. , 2000, 11, 45-51.		117
313	Definition of quality classes for champagne cork stoppers in the high quality range. Wood Science and Technology, 2000, 34, 3-10.	1.4	17
314	Quality grading of cork planks with classification models based on defect characterisation. European Journal of Wood and Wood Products, 2000, 58, 39-45.	1.3	31
315	Caract2risation de la croissance et de la qualit2 du lï2ge dans une r2gion de production. Annals of Fore Science, 2000, 57, 187-193.	st o.8	44
316	WITHIN–TREE VARIATION IN PHLOEM CELL DIMENSIONS AND PROPORTIONS IN EUCALYPTUS GLOBULUS. IAWA Journal, 2000, 21, 31-40.	2.7	40
317	VARIABILITY OF FIBRE LENGTH IN WOOD AND BARK IN EUCALYPTUS GLOBULUS. IAWA Journal, 2000, 21, 41-48.	2.7	41
318	Suberin Structure in Potato Periderm:Â Glycerol, Long-Chain Monomers, and Glyceryl and Feruloyl Dimers. Journal of Agricultural and Food Chemistry, 2000, 48, 5476-5483.	2.4	172
319	Diglycerol Alkenedioates in Suberin:Â Building Units of a Poly(acylglycerol) Polyester. Biomacromolecules, 2000, 1, 519-522.	2.6	40
320	Variability of Bark Structure in Plantation-Grown Eucalyptus Globulus. IAWA Journal, 1999, 20, 171-180.	2.7	33
321	Rapid Determination of the Lignin Content in Sitka Spruce (Picea sitchensis (Bong.) Carr.) Wood by Fourier Transform Infrared Spectrometry. Holzforschung, 1999, 53, 597-602.	0.9	27
322	Structural Characterization of Cork Lignin by Thioacidolysis and Permanganate Oxidation. Holzforschung, 1999, 53, 167-174.	0.9	36
323	Glyceryl-Acyl and Aryl-Acyl Dimers in Pseudotsuga menziesii Bark Suberin. Holzforschung, 1999, 53, 397-402.	0.9	47
324	Determination of tree to tree variation in syringyl/guaiacyl ratio of Eucalyptus globulus wood lignin by analytical pyrolysis. Journal of Analytical and Applied Pyrolysis, 1999, 48, 121-128.	2.6	115

#	Article	IF	CITATIONS
325	Improvement of the acetylbromide method for lignin determination within large scale screening programmes. European Journal of Wood and Wood Products, 1999, 57, 341-345.	1.3	29
326	Anatomy and chemical composition of Pinus pinea L. bark. Annales Des Sciences Forestières, 1999, 56, 479-484.	1.1	26
327	Thermally assisted transmethylation gas chromatography-mass spectrometry of suberin components in cork fromQuercus suber L Phytochemical Analysis, 1998, 9, 75-87.	1.2	23
328	Feruloyl Esters of ω-Hydroxyacids in Cork Suberin. Journal of Wood Chemistry and Technology, 1998, 18, 207-217.	0.9	43
329	Cork Suberin: A Glyceryl Based Polyester. Holzforschung, 1997, 51, 225-234.	0.9	79
330	Classification of defects in cork planks using image analysis. Wood Science and Technology, 1996, 30, 207.	1.4	31
331	The Evaluation of the Quality of Cork Planks by Image Analysis. Holzforschung, 1996, 50, 111-115.	0.9	67
332	Isolation and Characterization of a Guaiacyl Lignin from Saponified Cork of <i>Quercus suber </i> L Holzforschung, 1996, 50, 393-400.	0.9	41
333	Anatomy and Chemical Composition of Pinus Pinaster Bark. IAWA Journal, 1996, 17, 141-150.	2.7	30
334	High - pressure extraction of cork with CO2 and 1,4-dioxane. Process Technol, 1996, 12, 417-422.	0.1	0
335	Quantitative Analysis of Cork <i>(Quercus suber </i> L.) and Milled Cork Lignin by FTIR Spectroscopy, Analytical Pyrolysis, and Total Hydrolysis. Holzforschung, 1994, 48, 43-50.	0.9	52
336	The Effect of Long Term Treatment at 100°C–150°C on Structure, Chemical Composition and Compression Behaviour of Cork. Holzforschung, 1994, 48, 226-232.	0.9	38
337	Yield and quality in the production of cork stoppers. European Journal of Wood and Wood Products, 1994, 52, 211-214.	1.3	24
338	Influence of raw-material quality and process parameters in the production of insulation cork agglomerates. European Journal of Wood and Wood Products, 1993, 51, 301-308.	1.3	13
339	The Effect of Growth Rate on the Structure and Compressive Properties of Cork. IAWA Journal, 1992, 13, 389-396.	2.7	52
340	The thermochemical degradation of cork. Wood Science and Technology, 1992, 26, 259.	1.4	48
341	A mass spectrometry study of thermal dissociation of cork. International Journal of Mass Spectrometry and Ion Processes, 1992, 112, 191-204.	1.9	11
342	Raw-Material Quality of Fast Grown Eucalyptijs Globulus During the First Year. IAWA Journal, 1990, 11, 421-427.	2.7	8

#	Article	IF	CITATIONS
343	Optimization of Biomass Production in Eucalyptus Globulus Plantations. $\hat{a} \in$ " A Case Study. , 1989, , 101-121.		60
344	Trabeculae in the Cork Cells of Quercus Suber L IAWA Journal, 1989, 10, 209-211.	2.7	1
345	Scanning electron microscopy observations of insulation cork agglomerates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 111, 217-225.	2.6	30
346	Chemical composition and variability of cork from Quercus suber L Wood Science and Technology, 1988, 22, 211-218.	1.4	311
347	The Effect of Chemical Treatments on the Cellular Structure of Cork. IAWA Journal, 1988, 9, 337-345.	2.7	16
348	Structure and Chemical Composition of Cork from Calotropis Procera (AIT.) R. BR IAWA Journal, 1988, 9, 53-58.	2.7	12
349	The Cellular Structure of Cork from Quercus Suber L IAWA Journal, 1987, 8, 213-218.	2.7	109
350	Untersuchungen über das Verhalten von Hemicellulosen beim Aufschluß von Fichte und Buche mit Magnesium- und Natrium-Bisulfitlösung. 3. Mitt. Kochungen von isolierten Holo- und Hemicellulosen mit Magnesium- und Natrium-Bisulfitlösung. Holzforschung, 1976, 30, 196-201.	0.9	0
351	Untersuchungen über das Verhalten von Hemicellulosen beim Aufschluß von Fichte und Buche mit Magnesium- und Natriumbisulfitlösung. I. Mitt. Der Aufschluß von Fichtenholz. Holzforschung, 1976, 30, 137-143.	0.9	2
352	Untersuchungen über das Verhalten von Hemicellulosen beim Aufschluß von Fichte und Buche mit Magnesium- und Natrium-Bisulfitlösung 2. Mitt. Der Aufschluß von Buchenholz. Holzforschung, 1976, 30, 191-196.	0.9	1
353	Compositional Variability of Lignin in Biomass. , 0, , .		56
354	Chemical Characterization of Lignocellulosic Materials by Analytical Pyrolysis. , 0, , .		11
355	Bark characterization of a commercial Eucalyptus urophylla hybrid clone in view of its potential use as a biorefinery raw material. Biomass Conversion and Biorefinery, 0, , 1.	2.9	1
356	Cork and Cork Stoppers: Quality and Performance. , 0, , .		3
357	Properties of eco-friendly mortars produced by partial cement replacement with waste cork particles: a feasibility study. Biomass Conversion and Biorefinery, 0, , 1.	2.9	3
358	D-lactic acid production from hydrothermally pretreated, alkali delignified and enzymatically saccharified rockrose with the metabolic engineered Escherichia coli strain JU15. Biomass Conversion and Biorefinery, 0, , 1.	2.9	4