
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4977556/publications.pdf Version: 2024-02-01

NEMKLIMAD RANTHIA

#	Article	IF	CITATIONS
1	High-performance strain-hardening cementitious composites with tensile strain capacity exceeding 4%: A review. Cement and Concrete Composites, 2022, 125, 104325.	4.6	28
2	Strain-hardening fiber reinforced polymer concrete with a low carbon footprint. Construction and Building Materials, 2022, 314, 125705.	3.2	17
3	Wave amplitude of embedded ultrasonic transducer-based damage monitoring of concrete due to steel bar corrosion. Structural Health Monitoring, 2022, 21, 1694-1709.	4.3	4
4	Highly ductile fiber reinforced geopolymers under tensile impact. Cement and Concrete Composites, 2022, 126, 104374.	4.6	14
5	Effect of synthetic microfiber and viscosity modifier agent on layer deformation, viscosity, and open time of cement mortar for 3D printing application. Construction and Building Materials, 2022, 319, 126111.	3.2	12
6	The Influence of CaCl2-Blended Acrylic Polymer on Steel Rebar Corrosion and Acid Attack Resistance of Mortar. Corrosion and Materials Degradation, 2022, 3, 160-177.	1.0	4
7	Size effect of ultra-high-performance concrete under compression: effects of steel fiber characteristics and water-to-binder ratio. Construction and Building Materials, 2022, 330, 127170.	3.2	14
8	Effects of nano-SiO2 coating and induced corrosion of steel fiber on the interfacial bond and tensile properties of ultra-high-performance concrete (UHPC). Journal of Building Engineering, 2022, 54, 104637.	1.6	7
9	Effect of sodium sulfate activation on the early-age matrix strength and steel fiber bond in high volume fly ash (HVFA) cement mortar. Construction and Building Materials, 2022, 341, 127808.	3.2	7
10	Optimization of 3D printing concrete with coarse aggregate via proper mix design and printing process. Journal of Building Engineering, 2022, 56, 104745.	1.6	11
11	Benefits of curvilinear straight steel fibers on the rate-dependent pullout resistance of ultra-high-performance concrete. Cement and Concrete Composites, 2021, 118, 103965.	4.6	25
12	Effect of graphene oxide on single fiber pullout behavior. Construction and Building Materials, 2021, 280, 122539.	3.2	18
13	Mix design concepts for 3D printable concrete: A review. Cement and Concrete Composites, 2021, 122, 104155.	4.6	137
14	Deposition of nanosilica particles on fiber surface for improving interfacial bond and tensile performances of ultra-high-performance fiber-reinforced concrete. Composites Part B: Engineering, 2021, 221, 109030.	5.9	47
15	Exogenous healing in concrete with pH-sustained internal carbonation. Cement and Concrete Composites, 2021, 123, 104173.	4.6	3
16	Corrosion of partially and fully debonded steel fibers from ultra-high-performance concrete and its influence on pullout resistance. Cement and Concrete Composites, 2021, 124, 104269.	4.6	14
17	An Innovative Approach to Simulate Biocorrosion in Concrete Pipes. Journal of Testing and Evaluation, 2021, 49, 728-739.	0.4	2
18	Analytical and experimental study of using recycled tire products in pavement-grade concrete suited for hot weather climates. Construction and Building Materials, 2021, 312, 125343.	3.2	4

#	Article	IF	CITATIONS
19	Tensile behavior of crack-repaired ultra-high-performance fiber-reinforced concrete under corrosive environment. Journal of Materials Research and Technology, 2021, 15, 6813-6827.	2.6	8
20	Water permeability of Eco-Friendly Ductile Cementitious Composites (EDCC) under an applied compressive stress. Cement and Concrete Composites, 2020, 107, 103500.	4.6	12
21	Alkali–Silica Reaction Resistance of Cementitious Material Containing CaCl2-Blended Acrylic Polymer Emulsion. Journal of Materials in Civil Engineering, 2020, 32, 04019378.	1.3	2
22	Use of infrared thermal imaging to detect corrosion of epoxy coated and uncoated rebar in concrete. Construction and Building Materials, 2020, 263, 120162.	3.2	37
23	Leaching kinetics and reactivity evaluation of ferronickel slag in alkaline conditions. Cement and Concrete Research, 2020, 137, 106202.	4.6	41
24	Assessment of steel fiber corrosion in self-healed ultra-high-performance fiber-reinforced concrete and its effect on tensile performance. Cement and Concrete Research, 2020, 133, 106091.	4.6	62
25	Achieving slip-hardening behavior of sanded straight steel fibers in ultra-high-performance concrete. Cement and Concrete Composites, 2020, 113, 103669.	4.6	55
26	Hydration and soundness properties of phosphoric acid modified steel slag powder. Construction and Building Materials, 2020, 254, 119319.	3.2	49
27	Interpreting the early-age reaction process of alkali-activated slag by using combined embedded ultrasonic measurement, thermal analysis, XRD, FTIR and SEM. Composites Part B: Engineering, 2020, 186, 107840.	5.9	105
28	Effect of fly ash/silica fume ratio and curing condition on mechanical properties of fiber-reinforced geopolymer. Journal of Sustainable Cement-Based Materials, 2020, 9, 218-232.	1.7	34
29	Impact resistance of fiber-reinforced concrete – A review. Cement and Concrete Composites, 2019, 104, 103389.	4.6	174
30	Fiber-Reinforced Cement Composites: Mechanical Properties and Structural Implications 2019. Advances in Materials Science and Engineering, 2019, 2019, 1-2.	1.0	2
31	Long-term sulfate resistance of cementitious composites containing fine crumb rubber. Cement and Concrete Composites, 2019, 104, 103354.	4.6	34
32	FRP fibre-cementitious matrix interfacial bond under time-dependent loading. Materials and Structures/Materiaux Et Constructions, 2019, 52, 1.	1.3	9
33	Value-added reuse of scrap tire polymeric fibers in cement-based structural applications. Journal of Cleaner Production, 2019, 231, 543-555.	4.6	16
34	Self-healing capability of ultra-high-performance fiber-reinforced concrete after exposure to cryogenic temperature. Cement and Concrete Composites, 2019, 104, 103335.	4.6	59
35	Performance characteristics of micro fiber-reinforced geopolymer mortars for repair. Construction and Building Materials, 2019, 215, 605-612.	3.2	69
36	Tensile performance of eco-friendly ductile geopolymer composites (EDGC) incorporating different micro-fibers. Cement and Concrete Composites, 2019, 103, 183-192.	4.6	65

#	Article	IF	CITATIONS
37	Effect of rubber insertion on impact behavior of multilayer steel fiber reinforced concrete bulletproof panel. Construction and Building Materials, 2019, 216, 476-484.	3.2	26
38	Polymer-Based Construction Materials for Civil Engineering. International Journal of Polymer Science, 2019, 2019, 1-2.	1.2	3
39	Development of a sustainable coating and repair material to prevent bio-corrosion in concrete sewer and waste-water pipes. Cement and Concrete Composites, 2019, 100, 99-107.	4.6	78
40	Investigation on porosity of partly carbonated paste specimens blended with fly ash through dual CT scans. Construction and Building Materials, 2019, 196, 692-702.	3.2	28
41	Matrix hybridization using waste fuel ash and slag in alkali-activated composites and its influence on maturity of fiber-matrix bond. Journal of Cleaner Production, 2018, 177, 857-867.	4.6	23
42	An innovative FRP fibre for concrete reinforcement: Production of fibre, micromechanics, and durability. Construction and Building Materials, 2018, 172, 406-421.	3.2	18
43	Scrap tire steel fiber as a substitute for commercial steel fiber in cement mortar: Engineering properties and cost-benefit analyses. Resources, Conservation and Recycling, 2018, 134, 248-256.	5.3	48
44	Effects of fiber geometry and cryogenic condition on mechanical properties of ultra-high-performance fiber-reinforced concrete. Cement and Concrete Research, 2018, 107, 30-40.	4.6	65
45	Use of tomography to understand the influence of preconditioning on carbonation tests in cement-based materials. Cement and Concrete Composites, 2018, 88, 52-63.	4.6	29
46	Water permeability of repair mortars under an applied compressive stress at early ages. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	8
47	Influence of fiber inclination angle on bond-slip behavior of different alkali-activated composites under dynamic and quasi-static loadings. Cement and Concrete Research, 2018, 107, 236-246.	4.6	20
48	The effects of CaCl2-blended acrylic polymer emulsion on the properties of cement mortar. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	8
49	Geometrical and boundary condition effects on restrained shrinkage behavior of UHPFRC slabs. KSCE Journal of Civil Engineering, 2018, 22, 185-195.	0.9	15
50	Correlating the permeability of mortar under compression with connected porosity and tortuosity. Magazine of Concrete Research, 2018, 70, 875-884.	0.9	14
51	Effect of fiber geometric property on rate dependent flexural behavior of ultra-high-performance cementitious composite. Cement and Concrete Composites, 2018, 86, 57-71.	4.6	45
52	Resistance to sulfate attack and underwater abrasion of fiber reinforced cement mortar. Construction and Building Materials, 2018, 189, 686-694.	3.2	46
53	Fiber-Reinforced Cement Composites: Mechanical Properties and Structural Implications. Advances in Materials Science and Engineering, 2018, 2018, 1-2.	1.0	3
54	Flexural Behavior and Single Fiber-Matrix Bond-Slip Behavior of Macro Fiber Reinforced Fly Ash-Based Geopolymers. , 2018, , 2338-2346.		2

#	Article	IF	CITATIONS
55	Nonlinear finite element analysis of ultra-high-performance fiber-reinforced concrete beams. International Journal of Damage Mechanics, 2017, 26, 735-757.	2.4	55
56	Bond strength between concrete substrate and metakaolin geopolymer repair mortar: Effect of curing regime and PVA fiber reinforcement. Cement and Concrete Composites, 2017, 80, 307-316.	4.6	100
57	Effect of SiO2/Al2O3 molar ratio on mechanical behavior and capillary sorption of MK-based alkali-activated composites reinforced with PVA fibers. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	10
58	Flexural behavior of geopolymer composites reinforced with steel and polypropylene macro fibers. Cement and Concrete Composites, 2017, 80, 31-40.	4.6	173
59	Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast. Construction and Building Materials, 2017, 149, 416-431.	3.2	170
60	Durability performance of polymeric scrap tire fibers and its reinforced cement mortar. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	33
61	Performance of scrap tire steel fibers in OPC and alkali-activated mortars. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	13
62	Size-dependent impact resistance of ultra-high-performance fiber-reinforced concrete beams. Construction and Building Materials, 2017, 142, 363-375.	3.2	29
63	Infrared thermographic assessment of cement mortar porosity and strength. Journal of Civil Structural Health Monitoring, 2017, 7, 375-384.	2.0	3
64	Experimental and numerical study on flexural behavior of ultra-high-performance fiber-reinforced concrete beams with low reinforcement ratios. Canadian Journal of Civil Engineering, 2017, 44, 18-28.	0.7	68
65	Experimental and numerical analysis of the flexural response of amorphous metallic fiber reinforced concrete. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	10
66	Pull-out behavior of different fibers in geopolymer mortars: effects of alkaline solution concentration and curing. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	94
67	Effect of high strain-rates on the tensile constitutive response of Ecofriendly Ductile Cementitious Composite (EDCC). Procedia Engineering, 2017, 210, 93-104.	1.2	11
68	Seismic Strengthening of Unreinforced Masonry Walls using Sprayable Eco-Friendly Ductile Cementitious Composite (EDCC). Procedia Engineering, 2017, 210, 154-164.	1.2	16
69	Preliminary Study on Multilayer Bulletproof Concrete Panel: Impact Energy Absorption and Failure Pattern of Fibre Reinforced Concrete, Para-Rubber and Styrofoam Sheets. Procedia Engineering, 2017, 210, 369-376.	1.2	7
70	Advanced Cementitious Materials: Mechanical Behavior, Durability, and Volume Stability. Advances in Materials Science and Engineering, 2017, 2017, 1-2.	1.0	1
71	Impact Resistance of Reinforced Ultra-High-Performance Concrete Beams with Different Steel Fibers. ACI Structural Journal, 2017, 114, .	0.3	48
72	Carbon Fiber-Reinforced Cement-Based Composites for Tensile Strain Sensing. ACI Materials Journal, 2017, 114, .	0.3	10

#	Article	IF	CITATIONS
73	The effect of the alkaline solution content on the mechanical properties of MK-based PVA fiber-reinforced geopolymers. ÉpÃtÅ'anyag: Journal of Silicate Based and Composite Materials, 2017, 69, 13-18.	0.0	3
74	Comparative Biaxial Flexural Behavior of Ultra-High-Performance Fiber-Reinforced Concrete Panels Using Two Different Test and Placement Methods. Journal of Testing and Evaluation, 2017, 45, 624-641.	0.4	9
75	Performance of blended metakaolin/blastfurnace slag alkali-activated mortars. Cement and Concrete Composites, 2016, 71, 42-52.	4.6	100
76	Predicting the flexural behavior of ultra-high-performance fiber-reinforced concrete. Cement and Concrete Composites, 2016, 74, 71-87.	4.6	72
77	Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cement and Concrete Composites, 2016, 73, 267-280.	4.6	526
78	Effect of fiber orientation on the rate-dependent flexural behavior of ultra-high-performance fiber-reinforced concrete. Composite Structures, 2016, 157, 62-70.	3.1	115
79	Size effect in normal- and high-strength amorphous metallic and steel fiber reinforced concrete beams. Construction and Building Materials, 2016, 121, 676-685.	3.2	73
80	Predicting service deflection of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP bars. Composites Part B: Engineering, 2016, 99, 381-397.	5.9	57
81	Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composites, 2016, 68, 96-108.	4.6	400
82	Size effect in ultra-high-performance concrete beams. Engineering Fracture Mechanics, 2016, 157, 86-106.	2.0	112
83	Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars. Engineering Structures, 2016, 111, 246-262.	2.6	160
84	Correlating plastic shrinkage cracking potential of fiber reinforced cement composites with its early-age constitutive response in tension. Materials and Structures/Materiaux Et Constructions, 2016, 49, 1499-1509.	1.3	9
85	Mechanical Properties of Corrosion-Free and Sustainable Amorphous Metallic Fiber Reinforced Concrete. ACI Materials Journal, 2016, 113, .	0.3	6
86	Mitigating early-age cracking in thin UHPFRC precast concrete products using shrinkage-reducing admixtures. PCI Journal, 2016, 61, 39-50.	0.4	10
87	A 3D percolation model for conductive fibrous composites: application in cement-based sensors. Journal of Materials Science, 2015, 50, 5817-5821.	1.7	15
88	Predicting the post-cracking behavior of normal- and high-strength steel-fiber-reinforced concrete beams. Construction and Building Materials, 2015, 93, 477-485.	3.2	104
89	Response of ultra-high-performance fiber-reinforced concrete beams with continuous steel reinforcement subjected to low-velocity impact loading. Composite Structures, 2015, 126, 233-245.	3.1	143
90	Flexural response of steel-fiber-reinforced concrete beams: Effects of strength, fiber content, and strain-rate. Cement and Concrete Composites, 2015, 64, 84-92.	4.6	175

#	Article	IF	CITATIONS
91	Effectiveness of shrinkage-reducing admixture in reducing autogenous shrinkage stress of ultra-high-performance fiber-reinforced concrete. Cement and Concrete Composites, 2015, 64, 27-36.	4.6	103
92	Numerical simulation on structural behavior of UHPFRC beams with steel and GFRP bars. Computers and Concrete, 2015, 16, 759-774.	0.7	12
93	A Novel Drop Weight Impact Setup for Testing Reinforced Concrete Beams. Experimental Techniques, 2014, 38, 72-79.	0.9	46
94	Sustainable fiber reinforced concrete for repair applications. Construction and Building Materials, 2014, 67, 405-412.	3.2	51
95	Preliminary study on bullet resistance of double-layer concrete panel made of rubberized and steel fiber reinforced concrete. Materials and Structures/Materiaux Et Constructions, 2014, 47, 117-125.	1.3	28
96	Fiber synergy in Hybrid Fiber Reinforced Concrete (HyFRC) in flexure and direct shear. Cement and Concrete Composites, 2014, 48, 91-97.	4.6	260
97	A study of some factors affecting bond in cementitious fiber reinforced repairs. Cement and Concrete Research, 2014, 63, 117-126.	4.6	113
98	Climate change-induced carbonation of concrete infrastructure. Proceedings of Institution of Civil Engineers: Construction Materials, 2014, 167, 140-150.	0.7	5
99	Carbonation in concrete infrastructure in the context of global climate change: Development of a service lifespan model. Construction and Building Materials, 2013, 40, 775-782.	3.2	45
100	Use of rubberized concrete as a cushion layer in bulletproof fiber reinforced concrete panels. Construction and Building Materials, 2013, 41, 801-811.	3.2	37
101	Carbonation in concrete infrastructure in the context of global climate change – Part 1: Experimental results and model development. Cement and Concrete Composites, 2012, 34, 924-930.	4.6	87
102	Carbonation in concrete infrastructure in the context of global climate change: Part 2 – Canadian urban simulations. Cement and Concrete Composites, 2012, 34, 931-935.	4.6	54
103	Shear Strengthening of RC Beams Using Sprayed Glass Fiber Reinforced Polymer. Advances in Civil Engineering, 2012, 2012, 1-20.	0.4	27
104	Effect of shrinkage reducing admixture on flexural behaviors of fiber reinforced cementitious composites. Cement and Concrete Composites, 2012, 34, 443-450.	4.6	49
105	Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cement and Concrete Composites, 2012, 34, 866-873.	4.6	464
106	Corrosion of Rebar and Role of Fiber Reinforced Concrete. Journal of Testing and Evaluation, 2012, 40, 127-136.	0.4	5
107	Fiber-reinforced concrete in precast concrete applications: Research leads to innovative products. PCI Journal, 2012, 57, 33-46.	0.4	39
108	Development of a Lightweight Low-Carbon Footprint Concrete Containing Recycled Waste Materials. Advances in Civil Engineering, 2011, 2011, 1-8.	0.4	7

#	Article	IF	CITATIONS
109	Corrosion detection in reinforced concrete using induction heating and infrared thermography. Journal of Civil Structural Health Monitoring, 2011, 1, 25-35.	2.0	61
110	Influence of Feedback Control on Flexural Toughness of Fiber Reinforced Concrete in ASTM C1399 Tests. Journal of Testing and Evaluation, 2011, 39, 664-670.	0.4	1
111	Performance of Sprayed Fiber Reinforced Polymer Strengthened Timber Beams. Advances in Materials Science and Engineering, 2010, 2010, 1-6.	1.0	3
112	Size Effects in Flexural Toughness of Fiber Reinforced Concrete. Journal of Testing and Evaluation, 2010, 38, 332-338.	0.4	3
113	Effect of Particle Density on Its Rebound in Dry-Mix Shotcrete. Journal of Materials in Civil Engineering, 2009, 21, 58-64.	1.3	19
114	The effect of mechanical stress on permeability of concrete: A review. Cement and Concrete Composites, 2009, 31, 213-220.	4.6	199
115	Plastic shrinkage cracking in cementitious repairs and overlays. Materials and Structures/Materiaux Et Constructions, 2009, 42, 567-579.	1.3	38
116	RETROFIT OF SHEAR STRENGTH DEFICIENT RC BEAMS WITH SPRAYED GFRP. , 2009, , 1-10.		0
117	Permeability of concrete with fiber reinforcement and service life predictions. Materials and Structures/Materiaux Et Constructions, 2008, 41, 363-372.	1.3	37
118	Enhancing impact and Blast Resistance of Concrete with Fiber Reinforcement. NATO Security Through Science Series C: Environmental Security, 2008, , 171-187.	0.1	2
119	Carbon-fiber-reinforced cement-based sensors. Canadian Journal of Civil Engineering, 2007, 34, 284-290.	0.7	56
120	Toughness enhancement in steel fiber reinforced concrete through fiber hybridization. Cement and Concrete Research, 2007, 37, 1366-1372.	4.6	360
121	Sprayed GFRP shear-strengthened reinforced concrete Beams under Impact Loading. , 2007, , 279-286.		3
122	Size Effects and the Dynamic Response of Plain Concrete. Journal of Materials in Civil Engineering, 2006, 18, 485-491.	1.3	33
123	Fiber Reinforced Shotcrete: The Effect of the Spraying Process. , 2006, , 158.		0
124	Bringing Science to an Art: A Decade of Shotcrete Research at the University of British Columbia. , 2006, , 30.		1
125	Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement and Concrete Research, 2006, 36, 1263-1267.	4.6	431
126	Shear strength of reinforced concrete beams with a fiber concrete matrix. Canadian Journal of Civil Engineering, 2006, 33, 726-734.	0.7	59

#	Article	IF	CITATIONS
127	Process dependence of shotcrete for repairs. International Journal of Materials and Product Technology, 2005, 23, 240.	0.1	3
128	Permeability of concrete under stress. Cement and Concrete Research, 2005, 35, 1651-1655.	4.6	97
129	Crack growth resistance of hybrid fiber reinforced cement composites. Cement and Concrete Composites, 2003, 25, 3-9.	4.6	247
130	Fiber reinforced dry-mix shotcrete with metakaolin. Cement and Concrete Composites, 2001, 23, 503-514.	4.6	19
131	Crack growth resistance of concrete reinforced with a low volume fraction of polymericm fiber. Journal of Materials Science Letters, 2001, 20, 1651-1653.	0.5	10
132	Development of a general model of aggregate rebound for dry-mix shotcrete—(Part II). Materials and Structures/Materiaux Et Constructions, 1998, 31, 195-202.	1.3	30
133	Mechanics of aggregate rebound in shotcrete—(Part I). Materiaux Et Constructions, 1998, 31, 91-98.	0.3	33
134	Restrained shrinkage cracking in fiber reinforced concrete: A novel test technique. Cement and Concrete Research, 1996, 26, 9-14.	4.6	58
135	Durability of microfiber-reinforced mortars. Cement and Concrete Research, 1996, 26, 601-609.	4.6	35
136	Fracture toughness of micro-fiber reinforced cement composites. Cement and Concrete Composites, 1996, 18, 251-269.	4.6	155
137	Behavior of Concrete Slabs Reinforced with Fiber-Reinforced Plastic Grid. Journal of Materials in Civil Engineering, 1995, 7, 252-257.	1.3	53
138	Steelâ€Fiberâ€Reinforced Wetâ€Mix Shotcrete: Comparisons with Cast Concrete. Journal of Materials in Civil Engineering, 1994, 6, 430-437.	1.3	35
139	Carbon and Steel Microfiberâ€Reinforced Cementâ€Based Composites for Thin Repairs. Journal of Materials in Civil Engineering, 1994, 6, 88-99.	1.3	29
140	Properties of steel fiber reinforced shotcrete. Canadian Journal of Civil Engineering, 1994, 21, 564-575.	0.7	6
141	Micro-fiber reinforced cement composites. I. Uniaxial tensile response. Canadian Journal of Civil Engineering, 1994, 21, 999-1011.	0.7	59
142	Toughness Characterization of Steelâ€Fiber Reinforced Concrete. Journal of Materials in Civil Engineering, 1994, 6, 264-289.	1.3	65
143	Toughness indices of steel fiber reinforced concrete at sub-zero temperatures. Cement and Concrete Research, 1993, 23, 863-873.	4.6	6
144	Pitch-based carbon fiber reinforced cements: structure, performance, applications, and research needs. Canadian Journal of Civil Engineering, 1992, 19, 26-38.	0.7	17

#	Article	IF	CITATIONS
145	Micromechanics of steel fiber pull-out: rate sensitivity at very low temperatures. Cement and Concrete Composites, 1992, 14, 119-130.	4.6	10
146	Permeability of Roller Compacted Concrete. Journal of Materials in Civil Engineering, 1992, 4, 27-40.	1.3	28
147	First Canadian University-Industry Workshop on Fibre Reinforced Concrete. Materials and Processing Report, 1992, 7, 9-12.	0.0	0
148	Electrical resistivity of carbon and steel micro-fiber reinforced cements. Cement and Concrete Research, 1992, 22, 804-814.	4.6	233
149	Reinforcing With Very Fine Fibers Improves Cement Properties. Materials and Processing Report, 1991, 6, 4-5.	0.0	Ο
150	Freezing and thawing tests of high-strength concretes. Cement and Concrete Research, 1991, 21, 844-852.	4.6	40
151	Deformed steel fiber—cementitious matrix bond under impact. Cement and Concrete Research, 1991, 21, 158-168.	4.6	86
152	Temperature sensitivity of steel fibre pull-out from cement-based matrices. Journal of Materials Science Letters, 1991, 10, 448-450.	0.5	2
153	Micro-Reinforced Cementitious Materials. Materials Research Society Symposia Proceedings, 1990, 211, 25.	0.1	31
154	A study of some factors affecting the fiber–matrix bond in steel fiber reinforced concrete. Canadian Journal of Civil Engineering, 1990, 17, 610-620.	0.7	93
155	Effect of Early Freezing on Permeability of Cement Paste. Journal of Materials in Civil Engineering, 1989, 1, 119-132.	1.3	4
156	Marine Curing of Steel Fiber Composites. Journal of Materials in Civil Engineering, 1989, 1, 86-96.	1.3	31
157	Effects of curing temperature and early freezing on the pull-out behavior of steel fibres. Cement and Concrete Research, 1989, 19, 400-410.	4.6	14
158	Water permeability of cement paste. Cement and Concrete Research, 1989, 19, 727-736.	4.6	84
159	Calorimetric study of freezable water in cement paste. Cement and Concrete Research, 1989, 19, 939-950.	4.6	17
160	Load relaxation in steel fibres embedded in cement matrices. International Journal of Cement Composites and Lightweight Concrete, 1989, 11, 229-234.	0.2	4
161	Freeze-thaw durability and deicer salt scaling resistance of a 0,25 water-cement ratio concrete. Cement and Concrete Research, 1988, 18, 604-614.	4.6	47
162	The fracture toughness of concrete under impact loading. Cement and Concrete Research, 1987, 17, 231-241.	4.6	40

#	Article	IF	CITATIONS
163	Recycling Scrap Tire-Derived Fibers in Concrete. , 0, , 1.		2