Franc PoÅ3/4gan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/497749/publications.pdf

Version: 2024-02-01

١			516710	414414	
	52	1,107	16	32	
	papers	citations	h-index	g-index	
	r 7	F 7	F 7	1041	
	57	57	5/	1041	

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Mechanistic Insights into Annulation of Arylideneâ€î" ² â€Pyrrolinâ€4â€Ones by Cinchona Squaramideâ€Based Organocatalysts. Advanced Synthesis and Catalysis, 2022, 364, 980-993.	4.3	5
2	2-Acyl-1-aryl-6,7-dihydro-1H,5H-pyrazolo[1,2-a]pyrazole derivatives: Versatile fluorescent probes with remarkably large Stokes shift. Dyes and Pigments, 2022, 201, 110224.	3.7	1
3	Synthesis of 6,7-Dihydro-1H,5H-pyrazolo[1,2-a]pyrazoles by Azomethine Imine-Alkyne Cycloadditions Using Immobilized Cu(II)-Catalysts. Molecules, 2021, 26, 400.	3.8	7
4	Regioselective Ru(II)/Pd(0) Dual Catalysis: One-Pot Câ€"H Diarylation of Five-Membered Heterocyclic Derivatives. Journal of Organic Chemistry, 2021, 86, 3138-3151.	3.2	10
5	Visible-Light Driven Selective C–N Bond Scission in <i>anti</i> -Bimane-Like Derivatives. Organic Letters, 2021, 23, 5294-5298.	4.6	5
6	Double Spirocyclization of Arylidene-Î"2-Pyrrolin-4-Ones with 3-Isothiocyanato Oxindoles. Catalysts, 2020, 10, 1211.	3.5	7
7	Eosin Y-Catalyzed Visible-Light-Mediated Aerobic Transformation of Pyrazolidine-3-One Derivatives. Catalysts, 2020, 10, 981.	3.5	5
8	Self-Assembly of Multinuclear Sandwich Silver(I) Complexes by Cooperation of Hexakis(azaheteroaryl)benzene Ligands, Argentophilic Interactions, and Fluoride Inclusion. Inorganic Chemistry, 2020, 59, 3993-4001.	4.0	8
9	Stereodivergent Synthesis of Camphor-Derived Diamines and Their Application as Thiourea Organocatalysts. Molecules, 2020, 25, 2978.	3.8	5
10	Conformationally Driven Ru(II)-Catalyzed Multiple ortho-C–H Bond Activation in Diphenylpyrazine Derivatives in Water: Where Is the Limit?. Catalysts, 2020, 10, 421.	3.5	4
11	The Influence of the Quinoline Moiety on Direct Pd-Catalyzed Arylation of Five-Membered Heterocycles. European Journal of Organic Chemistry, 2019, 2019, 432-441.	2.4	6
12	Chemical recycling of polyenaminones by transamination reaction via amino–enaminone polymerisation/depolymerisation. European Polymer Journal, 2019, 121, 109282.	5.4	4
13	Synthesis of Spiroâ€Î" ² â€Pyrrolinâ€4â€One Pseudo Enantiomers <i>via</i> an Organocatalyzed Sulfaâ€Michael/Aldol Domino Sequence. Advanced Synthesis and Catalysis, 2019, 361, 5118-5126.	4.3	15
14	Construction of Vicinal Tetrasubstituted Stereogenic Centers <i>via</i> a Mannichâ€Type Organocatalyzed Addition of Î" ² â€Pyrrolinâ€4â€ones to Isatin Imines. Advanced Synthesis and Catalysis, 2018, 360, 1072-1076.	4.3	13
15	Copper-Catalyzed Azomethine Imine–Alkyne Cycloadditions (CuAIAC). Synthesis, 2018, 50, 4501-4524.	2.3	17
16	Metal-catalyzed [3+2] cycloadditions of azomethine imines. Chemistry of Heterocyclic Compounds, 2018, 54, 214-240.	1.2	20
17	Synthesis of polyenaminones by acid-catalysed amino–enaminone  click' polymerisation. European Polymer Journal, 2018, 108, 603-616.	5.4	4
18	Synthesis of Non-Racemic Pyrazolines and Pyrazolidines by [3+2] Cycloadditions of Azomethine Imines. Molecules, 2018, 23, 3.	3.8	31

#	Article	IF	CITATIONS
19	Acetylcholinesterase Inhibition and Antioxidant Activity of N-trans-Caffeoyldopamine and N-trans-Feruloyldopamine. Scientia Pharmaceutica, 2018, 86, 11.	2.0	16
20	Ruthenium(II)-Catalyzed Microwave-Promoted Multiple Câ€"H Activation in Synthesis of Hexa(heteroaryl)benzenes in Water. Organic Letters, 2018, 20, 5268-5273.	4.6	22
21	Synthesis of functionalized pyrazole derivatives by regioselective [3+2] cycloadditions of $\langle i \rangle N \langle i \rangle$ -Boc- $\langle i \rangle \hat{l} \pm \langle i \rangle$ -amino acid-derived ynones. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2018, 73, 467-480.	0.7	3
22	Microwaveâ€Promoted <i>ortho</i> â€Câ^H Bond (Hetero)arylation of Arylpyrimidines in Water Catalyzed by Ruthenium(II)â^Carboxylate. ChemCatChem, 2018, 10, 3824-3832.	3.7	11
23	Quinazolineâ€Directed C–H Bond Functionalization Catalyzed by Ruthenium(II) Carboxylate – Construction of Polyconjugated Arylâ€Heteroaryl Systems. European Journal of Organic Chemistry, 2017, 2017, 1855-1864.	2.4	20
24	Cu 0 -catalysed 1,3-dipolar cycloadditions of \hat{l}_{\pm} -amino acid derived N,N -cyclic azomethine imines to ynones. Tetrahedron, 2017, 73, 3329-3337.	1.9	10
25	Synthesis and Reactivity of 2â€Arylquinazoline Halidoruthenacycles in Arylation Reactions. ChemCatChem, 2017, 9, 3380-3387.	3.7	14
26	Combinatorial Synthesis of Acacen-Type Ligands and Their Coordination Compounds. ACS Combinatorial Science, 2017, 19, 386-396.	3.8	10
27	UHPLC-MS/MS determination of varietal thiol precursors in Sauvignon Blanc grapes. Scientific Reports, 2017, 7, 13122.	3.3	7
28	Metal-Catalysed Transfer Hydrogenation of Ketones. Topics in Current Chemistry, 2016, 374, 18.	5.8	26
29	Synthesis of 3D-Rich Heterocycles: Hexahydropyrazolo[1,5- <i>a</i>]pyridin-2(1 <i>H</i>)-ones and Octahydro-2 <i>H</i> -2a,2a ¹ -diazacyclopenta[<i>cd</i>]inden-2-ones. Journal of Organic Chemistry, 2016, 81, 8920-8933.	3.2	11
30	Absolute Configuration Determination of 2,3-Dihydro- $1 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > 4 < i > $	3.2	10
31	"Click―Chemistry: Application of Copper Metal in Cu-Catalyzed Azomethine Imine–Alkyne Cycloadditions. Journal of Organic Chemistry, 2016, 81, 5988-5997.	3.2	29
32	Synthesis of 8-heteroaryl nitroxoline analogues via one-pot sequential Pd-catalyzed coupling reactions. Organic and Biomolecular Chemistry, 2016, 14, 1969-1981.	2.8	16
33	Novel triazole-based ligands and their zinc(<scp>ii</scp>) and nickel(<scp>ii</scp>) complexes with a nitrogen donor environment as potential structural models for mononuclear active sites. New Journal of Chemistry, 2015, 39, 566-575.	2.8	11
34	A New Synthetic Route Towards Aliskiren Intermediates. Synthesis, 2014, 46, 3221-3228.	2.3	4
35	Advances in Catalyst Systems for the Asymmetric Hydrogenation and Transfer Hydrogenation of Ketones. Catalysis Reviews - Science and Engineering, 2014, 56, 82-174.	12.9	66
36	Oxydehydrogenative aromatization of fused 3-aminopyran-2-ones on carbon surfaces: a simple approach towards 3-amino-5-hydroxycoumarin derivatives. Monatshefte $F\tilde{A}\frac{1}{4}$ r Chemie, 2014, 145, 1329-1335.	1.8	2

#	Article	IF	CITATIONS
37	Synthesis of European pharmacopoeial impurities A, B, C, and D of cabergoline. RSC Advances, 2013, 3, 23146.	3.6	3
38	Reactivity of terminal phenylpentenes in a ruthenium-catalyzed cross-metathesis reaction: construction of linear bifunctional C-8 alkenes. Monatshefte $F\tilde{A}\frac{1}{4}r$ Chemie, 2013, 144, 633-640.	1.8	3
39	Surface-Functionalized COMB Capacitive Sensors and CMOS Electronics for Vapor Trace Detection of Explosives. IEEE Sensors Journal, 2012, 12, 1048-1057.	4.7	16
40	The synthesis of 12-membered macrocycles containing a C1–C8 alkene unit via ring-closing metathesis. Tetrahedron, 2012, 68, 5081-5086.	1.9	4
41	A microwave-assisted nucleophilic substitution reaction on a quinoline system: the synthesis of amino analogues of nitroxoline. Tetrahedron Letters, 2012, 53, 1964-1967.	1.4	11
42	Câ€"H Bond Functionalization of Arylpyrimidines Catalyzed by an in situ Generated Ruthenium(II) Carboxylate System and the Construction of Tris(heteroaryl)â€Substituted Benzenes. European Journal of Organic Chemistry, 2011, 2011, 3474-3481.	2.4	44
43	Palladium atalysed Direct Arylation of Heteroaromatics Bearing Unprotected Hydroxyalkyl Functions using Aryl Bromides. Advanced Synthesis and Catalysis, 2010, 352, 696-710.	4.3	81
44	Ruthenium(II) Acetate Catalyst for Direct Functionalisation of <i>sp</i> ² â€CH Bonds with Aryl Chlorides and Access to Tris―Heterocyclic Molecules. Advanced Synthesis and Catalysis, 2009, 351, 1737-1743.	4.3	111
45	Low catalyst loading ligand-free palladium-catalyzed direct arylation of furans: an economically and environmentally attractive access to 5-arylfurans. Green Chemistry, 2009, 11, 1832.	9.0	85
46	Ring Transformations of 2H-Pyran-2-ones and Fused Pyran-2-ones with Nucleophilic Reagents. Heterocycles, 2009, 77, 657.	0.7	21
47	Ligand-less palladium-catalyzed direct 5-arylation of thiophenes at low catalyst loadings. Green Chemistry, 2009, 11, 425.	9.0	131
48	Ligandâ€Free Palladiumâ€Catalysed Direct Arylation of Heteroaromatics Using Low Catalyst Loadings. ChemSusChem, 2008, 1, 404-407.	6.8	97
49	Recent Applications Of Alkene Metathesis For Fine Chemical And Supramolecular System Synthesis. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 195-222.	0.1	9
50	The synthesis of heterocyclic derivatives from pyran-2-ones and hydrazine hydrate. Ammonium cerium(IV) nitrate as an efficient oxidant in pyridazine chemistry. Tetrahedron, 2006, 62, 9718-9725.	1.9	16
51	A simple and efficient synthesis of 2-imidazolin-2-ones. New Journal of Chemistry, 2005, 29, 948.	2.8	10
52	Regioselectivity in the Schmidt Reaction: First Synthesis of Pyrano[3,2-b]azepines. Heterocycles, 2002, 56, 379.	0.7	10