
Igor Larrosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4977068/publications.pdf Version: 2024-02-01

ICOD LADDOSA

#	Article	IF	CITATIONS
1	Gold-mediated C–H bond functionalisation. Chemical Society Reviews, 2011, 40, 1910-1925.	18.7	439
2	Room Temperature and Phosphine Free Palladium Catalyzed Direct C-2 Arylation of Indoles. Journal of the American Chemical Society, 2008, 130, 2926-2927.	6.6	417
3	Overriding Ortho–Para Selectivity via a Traceless Directing Group Relay Strategy: The Meta-Selective Arylation of Phenols. Journal of the American Chemical Society, 2014, 136, 4109-4112.	6.6	319
4	Carboxylic Acids as Traceless Directing Groups for Formal <i>meta</i> ‣elective Direct Arylation. Angewandte Chemie - International Edition, 2011, 50, 9429-9432.	7.2	292
5	Intermolecular Decarboxylative Direct C-3 Arylation of Indoles with Benzoic Acids. Organic Letters, 2009, 11, 5506-5509.	2.4	288
6	Synthesis of six-membered oxygenated heterocycles through carbon–oxygen bond-forming reactions. Tetrahedron, 2008, 64, 2683-2723.	1.0	232
7	Decarboxylative Carbon-Carbon Bond-Forming Transformations of (Hetero)aromatic Carboxylic Acids. Synthesis, 2012, 44, 653-676.	1.2	227
8	The use of carboxylic acids as traceless directing groups for regioselective C–H bond functionalisation. Chemical Communications, 2017, 53, 5584-5597.	2.2	196
9	Au-Catalyzed Cross-Coupling of Arenes via Double C–H Activation. Journal of the American Chemical Society, 2015, 137, 15636-15639.	6.6	181
10	Câ^'H Carboxylation of Aromatic Compounds through CO ₂ Fixation. ChemSusChem, 2017, 10, 3317-3332.	3.6	179
11	Silver-Catalyzed Protodecarboxylation of Heteroaromatic Carboxylic Acids. Organic Letters, 2009, 11, 5710-5713.	2.4	168
12	Silver-catalysed protodecarboxylation of ortho-substituted benzoic acids. Chemical Communications, 2009, , 7176.	2.2	158
13	Bismuth-Catalyzed Benzylic Oxidations withtert-Butyl Hydroperoxide. Organic Letters, 2005, 7, 4549-4552.	2.4	154
14	Ag(I)-Catalyzed C–H Activation: The Role of the Ag(I) Salt in Pd/Ag-Mediated C–H Arylation of Electron-Deficient Arenes. Journal of the American Chemical Society, 2016, 138, 8384-8387.	6.6	136
15	Highly Convergent Three Component Benzyne Coupling:Â The Total Synthesis ofent-Clavilactone B. Journal of the American Chemical Society, 2006, 128, 14042-14043.	6.6	127
16	Gold(I)-Mediated Câ^'H Activation of Arenes. Journal of the American Chemical Society, 2010, 132, 5580-5581.	6.6	126
17	Room-Temperature Direct β-Arylation of Thiophenes and Benzo[<i>b</i>]thiophenes and Kinetic Evidence for a Heck-type Pathway. Journal of the American Chemical Society, 2016, 138, 1677-1683.	6.6	125
18	Cyclometallated ruthenium catalyst enables late-stage directed arylation of pharmaceuticals. Nature Chemistry, 2018, 10, 724-731.	6.6	124

#	Article	IF	CITATIONS
19	Ru-Catalyzed C–H Arylation of Fluoroarenes with Aryl Halides. Journal of the American Chemical Society, 2016, 138, 3596-3606.	6.6	120
20	Decarboxylative homocoupling of (hetero)aromatic carboxylic acids. Chemical Communications, 2010, 46, 8276.	2.2	118
21	Recent Progress in Decarboxylative Oxidative Cross oupling for Biaryl Synthesis. European Journal of Organic Chemistry, 2017, 2017, 3517-3527.	1.2	111
22	An organic cation as a silver(<scp>i</scp>) analogue for the arylation of sp ² and sp ³ C–H bonds with iodoarenes. Chemical Science, 2014, 5, 3509-3514.	3.7	100
23	Transition-Metal-Free Decarboxylative Iodination: New Routes for Decarboxylative Oxidative Cross-Couplings. Journal of the American Chemical Society, 2017, 139, 11527-11536.	6.6	99
24	Direct ortho-Arylation of ortho-Substituted Benzoic Acids: Overriding Pd-Catalyzed Protodecarboxylation. Organic Letters, 2013, 15, 910-913.	2.4	89
25	Redoxâ€Controlled Selectivity of CH Activation in the Oxidative Crossâ€Coupling of Arenes. Angewandte Chemie - International Edition, 2013, 52, 1781-1784.	7.2	87
26	Metalation Dictates Remote Regioselectivity: Rutheniumâ€Catalyzed Functionalization of <i>meta</i> C _{Ar} H Bonds. Angewandte Chemie - International Edition, 2013, 52, 11458-11460.	7.2	83
27	Rutheniumâ€Catalyzed Câ^'H Arylation of Benzoic Acids and Indole Carboxylic Acids with Aryl Halides. Chemistry - A European Journal, 2017, 23, 549-553.	1.7	83
28	"On Waterâ€, Phosphineâ€Free Palladiumâ€Catalyzed Room Temperature Cï£;H Arylation of Indoles. Chemistry - A European Journal, 2013, 19, 15093-15096.	1.7	82
29	Arene–Metal π-Complexation as a Traceless Reactivity Enhancer for C–H Arylation. Journal of the American Chemical Society, 2013, 135, 13258-13261.	6.6	78
30	Ag(l)–C–H Activation Enables Near-Room-Temperature Direct α-Arylation of Benzo[<i>b</i>]thiophenes. Journal of the American Chemical Society, 2018, 140, 9638-9643.	6.6	76
31	Enzymatic Carboxylation of 2-Furoic Acid Yields 2,5-Furandicarboxylic Acid (FDCA). ACS Catalysis, 2019, 9, 2854-2865.	5.5	74
32	Salicylic acids as readily available starting materials for the synthesis of meta-substituted biaryls. Chemical Communications, 2015, 51, 3127-3130.	2.2	69
33	A Novel Mode of Reactivity for Gold(I): The Decarboxylative Activation of (Hetero)Aromatic Carboxylic Acids. Advanced Synthesis and Catalysis, 2011, 353, 1359-1366.	2.1	68
34	Carboxylation of Phenols with CO ₂ at Atmospheric Pressure. Chemistry - A European Journal, 2016, 22, 6798-6802.	1.7	65
35	Photoelectrocatalysis of Rhodamine B and Solar Hydrogen Production by TiO 2 and Pd/TiO 2 Catalyst Systems. Electrochimica Acta, 2017, 231, 641-649.	2.6	61
36	Two Flavors of PEPPSI-IPr: Activation and Diffusion Control in a Single NHC-Ligated Pd Catalyst?. Organic Letters, 2011, 13, 146-149.	2.4	60

#	Article	IF	CITATIONS
37	The <i>ortho</i> ‧ubstituent Effect on the Ag atalysed Decarboxylation of Benzoic Acids. Chemistry - A European Journal, 2014, 20, 16680-16687.	1.7	58
38	Recent Advances in the C2 and C3 Regioselective Direct Arylation of Indoles. Advances in Heterocyclic Chemistry, 2012, 105, 309-351.	0.9	50
39	Mild Cleavage of Aryl Mesylates:  Methanesulfonate as Potent Protecting Group for Phenols. Organic Letters, 2004, 6, 1513-1514.	2.4	48
40	Tuning Reactivity and Site Selectivity of Simple Arenes in C–H Activation: Ortho-Arylation of Anisoles via Arene–Metal π-Complexation. Journal of the American Chemical Society, 2014, 136, 18082-18086.	6.6	47
41	Selective deuteration of (hetero)aromatic compounds via deutero-decarboxylation of carboxylic acids. Organic and Biomolecular Chemistry, 2012, 10, 3172.	1.5	45
42	Transition-metal-free decarboxylative bromination of aromatic carboxylic acids. Chemical Science, 2018, 9, 3860-3865.	3.7	43
43	<i>meta</i> -C–H arylation of fluoroarenes <i>via</i> traceless directing group relay strategy. Chemical Science, 2018, 9, 7133-7137.	3.7	43
44	Plasmon enhanced visible light photocatalysis for TiO ₂ supported Pd nanoparticles. Nanoscale, 2015, 7, 12331-12335.	2.8	38
45	Catalytic Asymmetric C–H Arylation of (η ⁶ -Arene)Chromium Complexes: Facile Access to Planar-Chiral Phosphines. ACS Catalysis, 2019, 9, 5268-5278.	5.5	37
46	Direct <i>ortho</i> -Arylation of Pyridinecarboxylic Acids: Overcoming the Deactivating Effect of sp ² -Nitrogen. Organic Letters, 2016, 18, 6094-6097.	2.4	35
47	Unprecedented Highly Stereoselective α- and β-C-Glycosidation with Chiral Titanium Enolates. Organic Letters, 2002, 4, 4651-4654.	2.4	34
48	A Domino Oxidation/Arylation/Protodecarboxylation Reaction of Salicylaldehydes: Expanded Access to <i>meta</i> â€Arylphenols. Chemistry - an Asian Journal, 2016, 11, 347-350.	1.7	34
49	Ag/Pd Cocatalyzed Direct Arylation of Fluoroarene Derivatives with Aryl Bromides. ACS Catalysis, 2020, 10, 2100-2107.	5.5	32
50	Stereoselective Synthesis of the Western Hemisphere of Salinomycin. Organic Letters, 2006, 8, 527-530.	2.4	30
51	A silver-free system for the direct C–H auration of arenes and heteroarenes from gold chloride complexes. Catalysis Science and Technology, 2013, 3, 2892.	2.1	30
52	Good things come in threes. Nature Chemistry, 2016, 8, 1086-1088.	6.6	26
53	Biaryl Synthesis via C–H Bond Activation. Advances in Organometallic Chemistry, 2017, 67, 299-399.	0.5	26
54	Cyclometalated Ruthenium Catalyst Enables Ortho-Selective C–H Alkylation with Secondary Alkyl Bromides. CheM, 2020, 6, 1459-1468.	5.8	26

#	Article	IF	CITATIONS
55	Benzoate Cyclometalation Enables Oxidative Addition of Haloarenes at a Ru(II) Center. Journal of the American Chemical Society, 2018, 140, 11836-11847.	6.6	25
56	Stable, concentrated, biocompatible, and defect-free graphene dispersions with positive charge. Nanoscale, 2020, 12, 12383-12394.	2.8	23
57	meta-Selective olefination of fluoroarenes with alkynes using CO2 as a traceless directing group. Chemical Science, 2020, 11, 4204-4208.	3.7	23
58	Selective and general exhaustive cross-coupling of di-chloroarenes with a deficit of nucleophiles mediated by a Pd–NHC complex. Chemical Communications, 2015, 51, 3832-3834.	2.2	22
59	Decarboxylative Suzuki–Miyaura coupling of (hetero)aromatic carboxylic acids using iodine as the terminal oxidant. Chemical Communications, 2019, 55, 6445-6448.	2.2	20
60	A Direct Arylation yclisation Reaction for the Construction of Mediumâ€5ized Rings. Chemistry - A European Journal, 2017, 23, 12763-12766.	1.7	19
61	Structure and Mechanism of <i>Pseudomonas aeruginosa</i> PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase Linked to Virulence. ACS Catalysis, 2021, 11, 2865-2878.	5.5	15
62	Catalysis with cycloruthenated complexes. Chemical Science, 2022, 13, 3335-3362.	3.7	15
63	Studies on the Intramolecular Câ^'H··X (X = O, S) Interactions in (S)-N-Acyl- 4-isopropyl-1,3-thiazolidine-2-thiones and Related 1,3-Oxazolidin-2-ones. Organic Letters, 2003, 5, 2809-2812.	2.4	14
64	Ru-catalyzed room-temperature alkylation and late-stage alkylation of arenes with primary alkyl bromides. Chem Catalysis, 2021, 1, 691-703.	2.9	14
65	Charge-tunable graphene dispersions in water made with amphoteric pyrene derivatives. Molecular Systems Design and Engineering, 2019, 4, 503-510.	1.7	13
66	Enhanced liquid phase exfoliation of graphene in water using an insoluble bis-pyrene stabiliser. Faraday Discussions, 2021, 227, 46-60.	1.6	12
67	Insights into the exfoliation mechanism of pyrene-assisted liquid phase exfoliation of graphene from lateral size-thickness characterisation. Carbon, 2022, 186, 550-559.	5.4	12
68	Recent Advances in the C-2 Regioselective Direct Arylation of Indoles. Progress in Heterocyclic Chemistry, 2011, 22, 1-20.	0.5	10
69	Palladium catalysed C–H arylation of pyrenes: access to a new class of exfoliating agents for water-based graphene dispersions. Chemical Science, 2020, 11, 2472-2478.	3.7	10
70	Reaction monitoring reveals poisoning mechanism of Pd ₂ (dba) ₃ and guides catalyst selection. Chemical Communications, 2017, 53, 12890-12893.	2.2	9
71	Transition metal-free cross-dehydrogenative arylation of unactivated benzylic C–H bonds. Chemical Communications, 2020, 56, 14479-14482.	2.2	9
72	Studies on the Total Synthesis of Lactonamycin: Synthesis of the Fused Pentacyclic B–F Ring Unit. European Journal of Organic Chemistry, 2012, 2012, 107-113.	1.2	8

#	Article	IF	CITATIONS
73	C–H Functionalisation of Heteroaromatic Compounds via Gold Catalysis. Topics in Heterocyclic Chemistry, 2016, , 175-226.	0.2	8
74	Evidence for Site-Specific Reversible Hydrogen Adsorption on Graphene by Sum-Frequency Generation Spectroscopy and Density Functional Theory. Journal of Physical Chemistry C, 2019, 123, 25883-25889.	1.5	6
75	Ketone C–C Bond Activation Meets the Suzuki-Miyaura Cross-coupling. CheM, 2018, 4, 1203-1204.	5.8	4
76	Stereoselective Synthesis of \hat{I}_{\pm} - and \hat{I}^2 -C-Glycosides by Addition of Titanium Enolates to Glycals. Synlett, 2009, 2009, 2982-2986.	1.0	2
77	Determination of 2H KIEs from Competition Experiments: Increased Accuracy via Isotopic Enrichment. Topics in Catalysis, 2017, 60, 589-593.	1.3	2
78	Highly Efficient Plasmonic Palladium-Titanium Dioxide Co-Catalyst in the Photodegradation of Rhodamine B Dye. Advances in Science and Technology, 0, , .	0.2	1
79	Two prime or not two prime. Nature Catalysis, 2018, 1, 381-382.	16.1	1
80	Synthesis of O-BenzylProtectedantiAldols through the Cross-Coupling Reactionof Dibenzyl Acetals with a Chiral Titanium Enolate. Synlett, 2003, 2003, 1109-1112.	1.0	0
81	Mild Cleavage of Aryl Mesylates: Methanesulfonate as Potent Protecting Group for Phenols ChemInform, 2004, 35, no.	0.1	0
82	Development of High Surface Area Titania on Glass Fibre Supports for Photocatalysis. Advances in Science and Technology, 0, , .	0.2	0
83	C–H Borylation: No Need to Stop for Directions. Trends in Chemistry, 2020, 2, 957-959.	4.4	0
84	Sesquiterpene Lactones Potentiate Olaparib-Induced DNA Damage in p53 Wildtype Cancer Cells. International Journal of Molecular Sciences, 2022, 23, 1116.	1.8	0