
## Mohsen Nazari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/497672/publications.pdf Version: 2024-02-01



MOHSEN NAZADI

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid.<br>International Communications in Heat and Mass Transfer, 2012, 39, 456-462.                             | 5.6 | 159       |
| 2  | Comparing the thermal performance of water, Ethylene Glycol, Alumina and CNT nanofluids in CPU cooling: Experimental study. Experimental Thermal and Fluid Science, 2014, 57, 371-377.              | 2.7 | 115       |
| 3  | Experimental study of convective heat transfer of a nanofluid through a pipe filled with metal foam.<br>International Journal of Thermal Sciences, 2015, 88, 33-39.                                 | 4.9 | 84        |
| 4  | Forced Convection Heat Transfer of Nanofluids in a Porous Channel. Transport in Porous Media, 2012, 93, 401-413.                                                                                    | 2.6 | 65        |
| 5  | Power-law fluid flow and heat transfer in a channel with a built-in porous square cylinder: Lattice<br>Boltzmann simulation. Journal of Non-Newtonian Fluid Mechanics, 2014, 204, 38-49.            | 2.4 | 55        |
| 6  | Sedimentation of elliptical particles using Immersed Boundary – Lattice Boltzmann Method: A<br>complementary repulsive force model. Journal of Molecular Liquids, 2018, 262, 180-193.               | 4.9 | 55        |
| 7  | Non-Newtonian particulate flow simulation: A direct-forcing immersed boundary–lattice Boltzmann<br>approach. Physica A: Statistical Mechanics and Its Applications, 2016, 447, 1-20.                | 2.6 | 53        |
| 8  | HEAT TRANSFER ENHANCEMENT IN A CHANNEL PARTIALLY FILLED WITH A POROUS BLOCK: LATTICE BOLTZMANN METHOD. International Journal of Modern Physics C, 2013, 24, 1350060.                                | 1.7 | 44        |
| 9  | An immersed boundary-lattice Boltzmann method combined with a robust lattice spring model for solving flow–structure interaction problems. Applied Mathematical Modelling, 2018, 55, 502-521.       | 4.2 | 42        |
| 10 | 3D experimental visualization of water flooding in proton exchange membrane fuel cells. Energy, 2019, 175, 967-977.                                                                                 | 8.8 | 42        |
| 11 | Lattice Boltzmann simulation of double diffusive natural convection in a square cavity with a hot square obstacle. Chinese Journal of Chemical Engineering, 2015, 23, 22-30.                        | 3.5 | 41        |
| 12 | Comparative study of forced convection of a power-law fluid in a channel with a built-in square cylinder. Journal of Applied Mechanics and Technical Physics, 2016, 57, 55-68.                      | 0.5 | 40        |
| 13 | Direct-forcing immersed boundary – non-Newtonian lattice Boltzmann method for transient<br>non-isothermal sedimentation. Journal of Aerosol Science, 2017, 104, 106-122.                            | 3.8 | 40        |
| 14 | Increasing the performance of gas diffusion layer by insertion of small hydrophilic layer in<br>proton-exchange membrane fuel cells. International Journal of Hydrogen Energy, 2018, 43, 2410-2428. | 7.1 | 39        |
| 15 | Immersed Boundary – Thermal Lattice Boltzmann Methods for Non-Newtonian Flows Over a Heated Cylinder: A Comparative Study. Communications in Computational Physics, 2015, 18, 489-515.              | 1.7 | 35        |
| 16 | Thermal characteristics of CPU cooling by using a novel porous heat sink and nanofluids. Journal of<br>Thermal Analysis and Calorimetry, 2019, 138, 805-817.                                        | 3.6 | 35        |
| 17 | Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing<br>immersed boundary–thermal lattice Boltzmann method. Physical Review E, 2014, 89, 053312.         | 2.1 | 34        |
| 18 | A non-Newtonian direct numerical study for stationary and moving objects with various shapes: An<br>immersed boundary – Lattice Boltzmann approach. Journal of Aerosol Science, 2016, 93, 45-62.    | 3.8 | 34        |

Mohsen Nazari

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Natural convection and entropy generation analysis inside a channel with a porous plate mounted as<br>a cooling system. Thermal Science and Engineering Progress, 2018, 6, 186-193.                                               | 2.7 | 33        |
| 20 | Immersed boundary—thermal lattice Boltzmann method for the moving simulation of non-isothermal elliptical particles. Journal of Thermal Analysis and Calorimetry, 2019, 138, 4003-4017.                                           | 3.6 | 32        |
| 21 | Drop formation of ferrofluid at co-flowing microcahnnel under uniform magnetic field. European<br>Journal of Mechanics, B/Fluids, 2018, 67, 87-96.                                                                                | 2.5 | 29        |
| 22 | On the effect of mucus rheology on the muco-ciliary transport. Mathematical Biosciences, 2016, 272, 44-53.                                                                                                                        | 1.9 | 27        |
| 23 | Developing a fast and tunable micro-mixer using induced vortices around a conductive flexible link.<br>Physics of Fluids, 2017, 29, .                                                                                             | 4.0 | 27        |
| 24 | Experimental study of the effects of surfactant material and hydrocarbon agent on foam stability with the approach of enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124047. | 4.7 | 18        |
| 25 | Experimental analysis of turbulent convective heat transfer and pressure drop of Al2O3/water nanofluid in horizontal tube. Micro and Nano Letters, 2012, 7, 223.                                                                  | 1.3 | 16        |
| 26 | Numerical simulation of muco-ciliary clearance: immersed boundary-lattice Boltzmann method.<br>Computers and Fluids, 2016, 131, 91-101.                                                                                           | 2.5 | 16        |
| 27 | Natural Convection Induced by a Heated Vertical Plate Embedded in a Porous Medium with<br>Transpiration: Local Thermal Non-equilibrium Similarity Solutions. Transport in Porous Media, 2013,<br>98, 223-238.                     | 2.6 | 13        |
| 28 | Effects of Particle Migration on Nanofluid Forced Convection Heat Transfer in a Local Thermal<br>Non-Equilibrium Porous Channel. Journal of Nanofluids, 2014, 3, 51-59.                                                           | 2.7 | 12        |
| 29 | Numerical investigation on falling ferrofluid droplet under uniform magnetic field. European<br>Journal of Mechanics, B/Fluids, 2018, 72, 1-11.                                                                                   | 2.5 | 11        |
| 30 | Droplet size prediction in a microfluidic flow focusing device using an adaptive network based fuzzy inference system. Biomedical Microdevices, 2020, 22, 61.                                                                     | 2.8 | 11        |
| 31 | New models for heat flux splitting at the boundary of a porous medium: three energy equations for nanofluid flow under local thermal nonequilibrium conditions. Canadian Journal of Physics, 2014, 92, 1312-1319.                 | 1.1 | 10        |
| 32 | Cooling of an electronic board situated in various configurations inside an enclosure: lattice<br>Boltzmann method. Meccanica, 2014, 49, 645-658.                                                                                 | 2.0 | 10        |
| 33 | A systematic overview of electrode configuration in electricâ€driven micropumps. Electrophoresis,<br>2022, 43, 1476-1520.                                                                                                         | 2.4 | 9         |
| 34 | Free Convection Heat Transfer over a Vertical Cylinder in a Saturated Porous Medium Using a Local<br>Thermal Non-equilibrium Model. Transport in Porous Media, 2012, 93, 453-460.                                                 | 2.6 | 8         |
| 35 | Effect of Obstacle Type on Methane–Air Flame Propagation in a Closed Duct: An Experimental Study.<br>Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141, .                                               | 2.3 | 8         |
| 36 | Analytical Solution of Nonequilibrium Heat Conduction in Porous Medium Incorporating a Variable<br>Porosity Model With Heat Generation. Journal of Heat Transfer, 2009, 131, .                                                    | 2.1 | 6         |

Mohsen Nazari

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Effects of Fluid-to-Solid Conductivity Ratio, Rayleigh Number and Interstitial Heat Transfer<br>Coefficient on the TNE Free Convection in a Porous Enclosure. Transport in Porous Media, 2011, 87,<br>625-633.                                  | 2.6 | 6         |
| 38 | Lattice Boltzmann simulation of natural convection in open end cavity with inclined hot wall. Applied Mathematics and Mechanics (English Edition), 2015, 36, 523-540.                                                                               | 3.6 | 6         |
| 39 | Fluid physics around conductive deformable flaps within an induced-charge electrokinetically driven microsystem. Microfluidics and Nanofluidics, 2016, 20, 1.                                                                                       | 2.2 | 6         |
| 40 | Analysis of Thermal Nonequilibrium Inverse Heat Transfer in a Porous Channel. Numerical Heat<br>Transfer; Part A: Applications, 2010, 57, 54-68.                                                                                                    | 2.1 | 5         |
| 41 | Unsteady heat transfer from a reservoir fluid by employing metal foam tube, helically tube and<br>straight tube: A comparative experimental study. Applied Thermal Engineering, 2017, 111, 39-48.                                                   | 6.0 | 5         |
| 42 | PREDICTING THE PENETRATION AND NAVIGATING THE MOTION OF A LIQUID DROP IN A LAYERED POROUS MEDIUM: VISCOUS FINGERING VS. CAPILLARY FINGERING. Brazilian Journal of Chemical Engineering, 2018, 35, 731-744.                                          | 1.3 | 5         |
| 43 | Comparison of the Mollification and Wavelet Prefiltering of Temperature Data in an Ill-Posed Inverse<br>Heat Conduction Problem, Application: Nonthermal Equilibrium Porous Medium. Heat Transfer<br>Engineering, 2012, 33, 704-711.                | 1.9 | 4         |
| 44 | Control of convective heat transfer by changing the right-angle position and the base angle of<br>triangular storages: lattice Boltzmann simulation. Journal of the Brazilian Society of Mechanical<br>Sciences and Engineering, 2015, 37, 149-161. | 1.6 | 4         |
| 45 | Flow characteristics prediction in a flow-focusing microchannel for a desired droplet size using an inverse model: experimental and numerical study. Microfluidics and Nanofluidics, 2022, 26, 1.                                                   | 2.2 | 4         |
| 46 | Tailored Surface Wettability of Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cells:<br>Proposing a Pore Scaleâ€īwo Phase Design. Fuel Cells, 2018, 18, 698-710.                                                                         | 2.4 | 3         |
| 47 | Immersed boundary-lattice Boltzmann method for simulation of muco-ciliary transport: effect of<br>mucus depth at various amounts of cilia beat frequency. IOP Conference Series: Materials Science and<br>Engineering, 2015, 100, 012065.           | 0.6 | 2         |
| 48 | Experimental study and visualization of impacting spherical hydrophobic particles on an air – Liquid interface: Newtonian and Boger liquid analysis. Chemical Engineering Science, 2021, 229, 116155.                                               | 3.8 | 2         |
| 49 | NOVEL SIMILARITY-SOLUTION WHICH IS APPLICABLE FOR FREE CONVECTION OVER A BODY OF ARBITRARY<br>SHAPE: THERMAL NON-EQUILIBRIUM IN A POROUS MEDIUM. Brazilian Journal of Chemical Engineering,<br>2015, 32, 225-235.                                   | 1.3 | 1         |
| 50 | The effects of grain geometry on waterflooding and viscous fingering in micro-fractures and porous media from a lattice Boltzmann method study. Molecular Simulation, 2018, 44, 708-721.                                                            | 2.0 | 1         |
| 51 | Proposing a lattice spring damper model for simulation of interaction between elastic/ viscoelastic<br>filaments and fluid flow in immersed boundary-lattice Boltzmann framework. Journal of Molecular<br>Liquids, 2019, 296, 111969.               | 4.9 | 1         |
| 52 | Direct numerical simulation of freely falling particles by hybrid immersed boundary – Lattice<br>Boltzmann – discrete element method. Particulate Science and Technology, 2020, 38, 286-298.                                                        | 2.1 | 1         |
| 53 | Thermal non-equilibrium heat transfer in a porous cavity in the presence of bio-chemical heat source.<br>Thermal Science, 2015, 19, 579-590.                                                                                                        | 1.1 | 1         |
| 54 | Visualization of Flame Propagation and Quenching of Methane/Air Mixture in a cubic enclosure with Perforated Plates: Experimental Study. Combustion Science and Technology, 0, , 1-20.                                                              | 2.3 | 1         |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Heat Transfer and Fluid Flow in Porous Media With Two Equations Non-Darcian Model. , 2005, , 637.                                                                                                        |     | 0         |
| 56 | A FEASIBILITY STUDY OF EMPLOYING SEQUENTIAL FUNCTION SPECIFICATION METHOD FOR ESTIMATION OF TRANSIENT HEAT FLUX IN A NON-THERMAL EQUILIBRIUM POROUS CHANNEL. Journal of Porous Media, 2011, 14, 375-381. | 1.9 | 0         |
| 57 | A NEW APPROACH FOR POROSITY ESTIMATION IN A MULTILAYER POROUS CHANNEL USING NONLINEAR CONJUGATE GRADIENTS METHOD. Journal of Porous Media, 2012, 15, 63-72.                                              | 1.9 | Ο         |
| 58 | NATURAL CONVECTION HEAT TRANSFER IN A POROUS CAVITY IN THE PRESENCE OF A BIOCHEMICAL HEAT SOURCE WHICH IS DEPENDENT ON SOLUTE CONCENTRATION GENERATION RATE. Journal of Porous Media, 2012, 15, 383-392. | 1.9 | 0         |