
Patrick C A Van Der Wel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4976417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solid-state NMR spectroscopy insights for resolving different water pools in alginate hydrogels. Food Hydrocolloids, 2022, 127, 107500.	10.7	17
2	Structural Dynamics and Tunability for Colloidal Tin Halide Perovskite Nanostructures. Advanced Materials, 2022, 34, e2201353.	21.0	16
3	Regulatory inter-domain interactions influence Hsp70 recruitment to the DnaJB8 chaperone. Nature Communications, 2021, 12, 946.	12.8	20
4	NMR identification of a conserved Drp1 cardiolipin-binding motif essential for stress-induced mitochondrial fission. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	31
5	Activation of Cytochrome C Peroxidase Function Through Coordinated Foldon Loop Dynamics upon Interaction with Anionic Lipids. Journal of Molecular Biology, 2021, 433, 167057.	4.2	5
6	Dihedral Angle Measurements for Structure Determination by Biomolecular Solid-State NMR Spectroscopy. Frontiers in Molecular Biosciences, 2021, 8, 791090.	3.5	4
7	Protofilament Structure and Supramolecular Polymorphism of Aggregated Mutant Huntingtin Exon 1. Journal of Molecular Biology, 2020, 432, 4722-4744.	4.2	34
8	Use of solid-state NMR spectroscopy for investigating polysaccharide-based hydrogels: A review. Carbohydrate Polymers, 2020, 240, 116276.	10.2	43
9	Conformational studies of pathogenic expanded polyglutamine protein deposits from Huntington's disease. Experimental Biology and Medicine, 2019, 244, 1584-1595.	2.4	27
10	Surface-Binding to Cardiolipin Nanodomains Triggers Cytochrome c Pro-apoptotic Peroxidase Activity via Localized Dynamics. Structure, 2019, 27, 806-815.e4.	3.3	28
11	Energetics Underlying Twist Polymorphisms in Amyloid Fibrils. Journal of Physical Chemistry B, 2018, 122, 1081-1091.	2.6	44
12	Hidden motions and motion-induced invisibility: Dynamics-based spectral editing in solid-state NMR. Methods, 2018, 148, 123-135.	3.8	72
13	Structural Fingerprinting of Protein Aggregates by Dynamic Nuclear Polarization-Enhanced Solid-State NMR at Natural Isotopic Abundance. Journal of the American Chemical Society, 2018, 140, 14576-14580.	13.7	22
14	Methionine oxidized apolipoprotein Aâ€I at the crossroads of HDL biogenesis and amyloid formation. FASEB Journal, 2018, 32, 3149-3165.	0.5	20
15	New applications of solid-state NMR in structural biology. Emerging Topics in Life Sciences, 2018, 2, 57-67.	2.6	56
16	On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR. Journal of Biomolecular NMR, 2017, 67, 165-178.	2.8	38
17	Cataract-associated P23T γD-crystallin retains a native-like fold in amorphous-looking aggregates formed at physiological pH. Nature Communications, 2017, 8, 15137.	12.8	69
18	Fibril polymorphism affects immobilized non-amyloid flanking domains of huntingtin exon1 rather than its polyglutamine core. Nature Communications, 2017, 8, 15462.	12.8	81

PATRICK C A VAN DER WEL

#	Article	IF	CITATIONS
19	Backbone Engineering within a Latent β-Hairpin Structure to Design Inhibitors of Polyglutamine Amyloid Formation. Journal of Molecular Biology, 2017, 429, 308-323.	4.2	21
20	Insights into protein misfolding and aggregation enabled by solid-state NMR spectroscopy. Solid State Nuclear Magnetic Resonance, 2017, 88, 1-14.	2.3	50
21	Peptide-Directed Assembly of Single-Helical Gold Nanoparticle Superstructures Exhibiting Intense Chiroptical Activity. Journal of the American Chemical Society, 2016, 138, 13655-13663.	13.7	141
22	MAS 1 H NMR Probes Freezing Point Depression of Water and Liquid-Gel Phase Transitions in Liposomes. Biophysical Journal, 2016, 111, 1965-1973.	0.5	19
23	Huntingtin exon 1 fibrils feature an interdigitated β-hairpin–based polyglutamine core. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1546-1551.	7.1	143
24	Structural Changes and Proapoptotic Peroxidase Activity of Cardiolipin-Bound Mitochondrial Cytochrome c. Biophysical Journal, 2015, 109, 1873-1884.	0.5	75
25	How Amyloid Precursor Protein Protects Itself from Cleavage. Structure, 2014, 22, 361-362.	3.3	3
26	Polyglutamine Amyloid Core Boundaries and Flanking Domain Dynamics in Huntingtin Fragment Fibrils Determined by Solid-State Nuclear Magnetic Resonance. Biochemistry, 2014, 53, 6653-6666.	2.5	74
27	d-Polyglutamine Amyloid Recruits l-Polyglutamine Monomers and Kills Cells. Journal of Molecular Biology, 2014, 426, 816-829.	4.2	36
28	Spinning-rate encoded chemical shift correlations from rotational resonance solid-state NMR experiments. Journal of Magnetic Resonance, 2013, 230, 117-124.	2.1	3
29	Structural and Motional Investigations of Polyglutamine-Containing Amyloid Fibrils by Magic-Angle-Spinning Solid-State NMR. Biophysical Journal, 2013, 104, 181a.	0.5	1
30	β-Hairpin-Mediated Nucleation of Polyglutamine Amyloid Formation. Journal of Molecular Biology, 2013, 425, 1183-1197.	4.2	91
31	Domain swapping and amyloid fibril conformation. Prion, 2012, 6, 211-216.	1.8	25
32	Lipid Dynamics and Protein–Lipid Interactions in 2D Crystals Formed with the β-Barrel Integral Membrane Protein VDAC1. Journal of the American Chemical Society, 2012, 134, 6375-6387.	13.7	65
33	Structural Characterization of the Caveolin Scaffolding Domain in Association with Cholesterol-Rich Membranes. Biochemistry, 2012, 51, 90-99.	2.5	72
34	Serine Phosphorylation Suppresses Huntingtin Amyloid Accumulation by Altering Protein Aggregation Properties. Journal of Molecular Biology, 2012, 424, 1-14.	4.2	76
35	In support of the BMRB. Nature Structural and Molecular Biology, 2012, 19, 854-860.	8.2	6
36	The Aggregation-Enhancing Huntingtin N-Terminus Is Helical in Amyloid Fibrils. Journal of the American Chemical Society, 2011, 133, 4558-4566.	13.7	158

#	Article	IF	CITATIONS
37	Structural Complexity of a Composite Amyloid Fibril. Journal of the American Chemical Society, 2011, 133, 14686-14698.	13.7	88
38	Amyloid-like Fibrils from a Domain-swapping Protein Feature a Parallel, in-Register Conformation without Native-like Interactions. Journal of Biological Chemistry, 2011, 286, 28988-28995.	3.4	26
39	Time Averaging of NMR Chemical Shifts in the MLF Peptide in the Solid State. Journal of the American Chemical Society, 2010, 132, 5993-6000.	13.7	65
40	Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR. Biochemistry, 2010, 49, 9457-9469.	2.5	66
41	Dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of GNNQQNY nanocrystals and amyloid fibrils. Physical Chemistry Chemical Physics, 2010, 12, 5911.	2.8	114
42	Targeted ¹³ C– ¹³ C Distance Measurements in a Microcrystalline Protein via Jâ€Decoupled Rotational Resonance Width Measurements. ChemPhysChem, 2009, 10, 1656-1663.	2.1	11
43	Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization. Journal of Magnetic Resonance, 2009, 198, 261-270.	2.1	108
44	High-resolution solid-state NMR structure of Alanyl-Prolyl-Glycine. Journal of Magnetic Resonance, 2009, 200, 95-100.	2.1	11
45	Observation of a Low-Temperature, Dynamically Driven Structural Transition in a Polypeptide by Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 118-128.	13.7	79
46	High-Field Dynamic Nuclear Polarization for Solid and Solution Biological NMR. Applied Magnetic Resonance, 2008, 34, 237-263.	1.2	296
47	Helical Distortion in Tryptophan- and Lysine-Anchored Membrane-Spanning α-Helices as a Function of Hydrophobic Mismatch: A Solid-State Deuterium NMR Investigation Using the Geometric Analysis of Labeled Alanines Method. Biophysical Journal, 2008, 94, 480-491.	0.5	40
48	Dynamic nuclear polarization at high magnetic fields. Journal of Chemical Physics, 2008, 128, 052211.	3.0	734
49	Solid-State NMR Study of Amyloid Nanocrystals and Fibrils Formed by the Peptide GNNQQNY from Yeast Prion Protein Sup35p. Journal of the American Chemical Society, 2007, 129, 5117-5130.	13.7	177
50	Orientation and Motion of Tryptophan Interfacial Anchors in Membrane-Spanning Peptides. Biochemistry, 2007, 46, 7514-7524.	2.5	48
51	Dynamic Nuclear Polarization of Amyloidogenic Peptide Nanocrystals:Â GNNQQNY, a Core Segment of the Yeast Prion Protein Sup35p. Journal of the American Chemical Society, 2006, 128, 10840-10846.	13.7	255
52	Multipole-multimode Floquet theory of rotational resonance width experiments: C13–C13 distance measurements in uniformly labeled solids. Journal of Chemical Physics, 2006, 124, 214107.	3.0	31
53	Importance of Tensor Asymmetry for the Analysis of2H NMR Spectra from Deuterated Aromatic Rings. Journal of the American Chemical Society, 2005, 127, 17488-17493.	13.7	19
54	Complexes obtained by electrophilic attack on a dinitrogen-derived terminal molybdenum nitride: electronic structure analysis by solid state CP/MAS 15N NMR in combination with DFT calculations. Polyhedron, 2004, 23, 2751-2768.	2.2	80

#	Article	IF	CITATIONS
55	Tilt Angles of Transmembrane Model Peptides in Oriented and Non-Oriented Lipid Bilayers as Determined by 2H Solid-State NMR. Biophysical Journal, 2004, 86, 3709-3721.	0.5	172
56	Combined Experimental/Theoretical Refinement of Indole Ring Geometry Using Deuterium Magnetic Resonance and ab Initio Calculations. Journal of the American Chemical Society, 2003, 125, 12268-12276.	13.7	24
57	Hydrophobic Mismatch between Helices and Lipid Bilayers. Biophysical Journal, 2003, 84, 379-385.	0.5	135
58	Lipid Dependence of Membrane Anchoring Properties and Snorkeling Behavior of Aromatic and Charged Residues in Transmembrane Peptidesâ€. Biochemistry, 2002, 41, 7190-7198.	2.5	106
59	Geometry and Intrinsic Tilt of a Tryptophan-Anchored Transmembrane α-Helix Determined by 2H NMR. Biophysical Journal, 2002, 83, 1479-1488.	0.5	161
60	Optimized aminolysis conditions for cleavage of N-protected hydrophobic peptides from solid-phase resins. Chemical Biology and Drug Design, 2001, 57, 519-527.	1.1	19
61	Tryptophan-Anchored Transmembrane Peptides Promote Formation of Nonlamellar Phases in Phosphatidylethanolamine Model Membranes in a Mismatch-Dependent Mannerâ€. Biochemistry, 2000, 39, 3124-3133.	2.5	58
62	Peptide Influences on Lipids. Novartis Foundation Symposium, 1999, 225, 170-187.	1.1	0
63	Modulation of membrane structure and function by hydrophobic mismatch between proteins and lipids. Pure and Applied Chemistry, 1998, 70, 75-82.	1.9	20
64	Solid-state NMR studies of peripherally membrane-associated proteins: dealing with dynamics, disorder and dilute conditions. , 0, , .		3