
Stefan Baudis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4976296/publications.pdf Version: 2024-02-01

STEEAN RALIDIS

#	Article	IF	CITATIONS
1	Highâ€Throughput and Combinatorial Approaches for the Development of Multifunctional Polymers. Macromolecular Rapid Communications, 2022, 43, e2100400.	3.9	13
2	Approaching new biomaterials: copolymerization characteristics of vinyl esters with norbornenes, allyl esters and allyl ethers. Polymer International, 2022, 71, 790-796.	3.1	1
3	A disulfide-based linker for thiol–norbornene conjugation: formation and cleavage of hydrogels by the use of light. Polymer Chemistry, 2022, 13, 1158-1168.	3.9	4
4	Gelatin methacryloyl as environment for chondrocytes and cell delivery to superficial cartilage defects. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 207-222.	2.7	22
5	Guiding cell migration in 3D with high-resolution photografting. Scientific Reports, 2022, 12, .	3.3	8
6	Biomimetic adhesion motifs based on RAFT polymers with phosphonate groups. European Polymer Journal, 2021, 143, 110188.	5.4	3
7	Differentiation of physical and chemical cross-linking in gelatin methacryloyl hydrogels. Scientific Reports, 2021, 11, 3256.	3.3	44
8	Photopolymerizable precursors for degradable biomaterials based on acetal moieties. European Polymer Journal, 2021, 154, 110536.	5.4	10
9	Polymer Networks for Enrichment of Calcium Ions. Polymers, 2021, 13, 3506.	4.5	1
10	Increasing the Microfabrication Performance of Synthetic Hydrogel Precursors through Molecular Design. Biomacromolecules, 2021, 22, 4919-4932.	5.4	6
11	Thiol–Ene Cross-linking of Poly(ethylene glycol) within High Internal Phase Emulsions: Degradable Hydrophilic PolyHIPEs for Controlled Drug Release. Macromolecules, 2021, 54, 10370-10380.	4.8	16
12	Thiol–Gelatin–Norbornene Bioink for Laserâ€Based Highâ€Definition Bioprinting. Advanced Healthcare Materials, 2020, 9, e1900752.	7.6	75
13	Hard Block Degradable Polycarbonate Urethanes: Promising Biomaterials for Electrospun Vascular Prostheses. Biomacromolecules, 2020, 21, 376-387.	5.4	21
14	Long Term Evaluation of Nanofibrous, Bioabsorbable Polycarbonate Urethane Grafts for Small Diameter Vessel Replacement in Rodents. European Journal of Vascular and Endovascular Surgery, 2020, 59, 643-652.	1.5	25
15	Assessment of a long-term in vitro model to characterize the mechanical behavior and macrophage-mediated degradation of a novel, degradable, electrospun poly-urethane vascular graft. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 104077.	3.1	9
16	Hybrid Hydrogel Networks by Photocrosslinking of Thermoresponsive α,ωâ€ŀtaconylâ€PLGAâ€PEGâ€PLGA Mic in Water: Influence of the Lithium Phenylâ€⊋,4,6â€Trimethylbenzoylphosphinate Photoinitinator. Macromolecular Chemistry and Physics, 2020, 221, 2000165.	elles 2.2	3
17	Single-Molecule Force Spectroscopy Reveals Adhesion-by-Demand in Statherin at the Protein–Hydroxyapatite Interface. Langmuir, 2020, 36, 13292-13300.	3.5	4
18	Hyaluronic acid vinyl esters: A toolbox toward controlling mechanical properties of hydrogels for 3D microfabrication. Journal of Polymer Science, 2020, 58, 1288-1298.	3.8	20

Stefan Baudis

#	Article	IF	CITATIONS
19	Impact of Hydrogel Stiffness on Differentiation of Human Adipose-Derived Stem Cell Microspheroids. Tissue Engineering - Part A, 2019, 25, 1369-1380.	3.1	71
20	Toughness enhancers for bone scaffold materials based on biocompatible photopolymers. Journal of Polymer Science Part A, 2019, 57, 110-119.	2.3	9
21	From space group to space groupoid: the partial symmetry of low-temperature <i>E</i> -vanillyl oxime. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 733-741.	1.1	0
22	A highly efficient waterborne photoinitiator for visible-light-induced three-dimensional printing of hydrogels. Chemical Communications, 2018, 54, 920-923.	4.1	77
23	Combining cure depth and cure degree, a new way to fully characterize novel photopolymers. Additive Manufacturing, 2018, 24, 166-172.	3.0	40
24	A structural reconsideration: Linear aliphatic or alicyclic hard segments for biodegradable thermoplastic polyurethanes?. Journal of Polymer Science Part A, 2018, 56, 2214-2224.	2.3	13
25	Photopolymerizable Materials for Cell Encapsulation. , 2018, , 353-396.		5
26	Highly Reactive Thiolâ€Norbornene Photoâ€Click Hydrogels: Toward Improved Processability. Macromolecular Rapid Communications, 2018, 39, e1800181.	3.9	77
27	Real Time-NIR/MIR-Photorheology: A Versatile Tool for the <i>in Situ</i> Characterization of Photopolymerization Reactions. Analytical Chemistry, 2017, 89, 4958-4968.	6.5	90
28	Physically and chemically gelling hydrogel formulations based on poly(ethylene glycol) diacrylate and Poloxamer 407. Polymer, 2017, 108, 21-28.	3.8	16
29	Durch sichtbares Licht und Nahinfrarotstrahlung abbaubare supramolekulare Metalloâ€Gele. Angewandte Chemie, 2017, 129, 16071-16075.	2.0	12
30	Metallo‣upramolecular Gels that are Photocleavable with Visible and Nearâ€Infrared Irradiation. Angewandte Chemie - International Edition, 2017, 56, 15857-15860.	13.8	62
31	Modular material system for the microfabrication of biocompatible hydrogels based on thiol-ene-modified poly(vinyl alcohol). Journal of Polymer Science Part A, 2016, 54, 2060-2070.	2.3	36
32	Robot Assisted Polyurethane Chain Extension of Dihydroxy Telechelic Depsipeptides. MRS Advances, 2016, 1, 2003-2009.	0.9	1
33	Knochen, Knorpel und Gefä̈́Ye maßschneidern mit Licht. Nachrichten Aus Der Chemie, 2016, 64, 406-410.	0.0	1
34	Robot Assisted Synthesis and Characterization of Polyester-based Polyurethanes. Materials Research Society Symposia Proceedings, 2015, 1718, 109-115.	0.1	1
35	The interaction of adipose-derived human mesenchymal stem cells and polyether ether ketone. Clinical Hemorheology and Microcirculation, 2015, 61, 301-321.	1.7	11
36	Characterization of bi-layered magnetic nanoparticles synthesized via two-step surface-initiated ring-opening polymerization. Pure and Applied Chemistry, 2015, 87, 1085-1097.	1.9	2

Stefan Baudis

#	Article	IF	CITATIONS
37	Effect of diisocyanate linkers on the degradation characteristics of copolyester urethanes as potential drug carrier matrices. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 18-26.	4.3	14
38	Surface characterization and protein interaction of a series of model poly[acrylonitrile-co-(N-vinyl) Tj ETQq0 0 0 rg 87-96.	BT /Overl 5.2	ock 10 Tf 50 22
39	Biodegradable, thermoplastic polyurethane grafts for small diameter vascular replacements. Acta Biomaterialia, 2015, 11, 104-113.	8.3	107
40	Smart Polymers for Biomedical Applications. Macromolecular Chemistry and Physics, 2014, 215, 2399-2402.	2.2	14
41	From macromolecules to materials to systems. Polymers for Advanced Technologies, 2014, 25, 1187-1188.	3.2	0
42	High Throughput Characterization of Polymer Libraries by Diffuse Reflectance Infrared Spectroscopy. Macromolecular Materials and Engineering, 2014, 299, 1292-1297.	3.6	7
43	Shapeâ€Memory Polymer Networks Prepared from Starâ€Shaped Poly[(<i>L</i> â€lactide)â€ <i>co</i> â€glycolide Precursors. Macromolecular Symposia, 2014, 345, 98-104.	0.7	4
44	Highâ€Throughput Synthesis as a Technology Platform for Copolymer Libraries. Macromolecular Symposia, 2014, 345, 105-111.	0.7	9
45	Hardâ€block degradable thermoplastic urethaneâ€elastomers for electrospun vascular prostheses. Journal of Polymer Science Part A, 2012, 50, 1272-1280.	2.3	42
46	Elastomeric degradable biomaterials by photopolymerization-based CAD-CAM for vascular tissue engineering. Biomedical Materials (Bristol), 2011, 6, 055003.	3.3	51
47	Photopolymerizable Elastomers for Vascular Tissue Regeneration. Macromolecular Symposia, 2010, 296, 121-126.	0.7	10
48	3D-printing of Urethane-based Photoelastomers for Vascular Tissue Regeneration. Materials Research Society Symposia Proceedings, 2009, 1239, 1.	0.1	1
49	(Bio)degradable Urethane-Elastomers for Electrospun Vascular Grafts. Materials Research Society Symposia Proceedings, 2009, 1235, 1.	0.1	1
50	(Meth)acrylateâ€based photoelastomers as tailored biomaterials for artificial vascular grafts. Journal of Polymer Science Part A, 2009, 47, 2664-2676.	2.3	42
51	Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography. Journal of Micromechanics and Microengineering, 2008, 18, 125014.	2.6	191
52	Study on Modified Dealkaline Lignin as Visible Light Macromolecular Photoinitiator for 3D Printing. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	6
53	Poly(vinyl alcohol) based hydrogels for 3D biomaterial constructs. Frontiers in Bioengineering and Biotechnology, 0, 4, .	4.1	0
54	Additive manufactured, biocompatible hydrogels based on hyaluronic acid. Frontiers in Bioengineering and Biotechnology, 0, 4, .	4.1	1