
Stefan Baudis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4976296/publications.pdf Version: 2024-02-01

τεελΝ Βλιιδι

#	Article	IF	CITATIONS
1	Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography. Journal of Micromechanics and Microengineering, 2008, 18, 125014.	2.6	191
2	Biodegradable, thermoplastic polyurethane grafts for small diameter vascular replacements. Acta Biomaterialia, 2015, 11, 104-113.	8.3	107
3	Real Time-NIR/MIR-Photorheology: A Versatile Tool for the <i>in Situ</i> Characterization of Photopolymerization Reactions. Analytical Chemistry, 2017, 89, 4958-4968.	6.5	90
4	A highly efficient waterborne photoinitiator for visible-light-induced three-dimensional printing of hydrogels. Chemical Communications, 2018, 54, 920-923.	4.1	77
5	Highly Reactive Thiolâ€Norbornene Photoâ€Click Hydrogels: Toward Improved Processability. Macromolecular Rapid Communications, 2018, 39, e1800181.	3.9	77
6	Thiol–Gelatin–Norbornene Bioink for Laserâ€Based Highâ€Definition Bioprinting. Advanced Healthcare Materials, 2020, 9, e1900752.	7.6	75
7	Impact of Hydrogel Stiffness on Differentiation of Human Adipose-Derived Stem Cell Microspheroids. Tissue Engineering - Part A, 2019, 25, 1369-1380.	3.1	71
8	Metallo‧upramolecular Gels that are Photocleavable with Visible and Nearâ€infrared Irradiation. Angewandte Chemie - International Edition, 2017, 56, 15857-15860.	13.8	62
9	Elastomeric degradable biomaterials by photopolymerization-based CAD-CAM for vascular tissue engineering. Biomedical Materials (Bristol), 2011, 6, 055003.	3.3	51
10	Differentiation of physical and chemical cross-linking in gelatin methacryloyl hydrogels. Scientific Reports, 2021, 11, 3256.	3.3	44
11	(Meth)acrylateâ€based photoelastomers as tailored biomaterials for artificial vascular grafts. Journal of Polymer Science Part A, 2009, 47, 2664-2676.	2.3	42
12	Hardâ€block degradable thermoplastic urethaneâ€elastomers for electrospun vascular prostheses. Journal of Polymer Science Part A, 2012, 50, 1272-1280.	2.3	42
13	Combining cure depth and cure degree, a new way to fully characterize novel photopolymers. Additive Manufacturing, 2018, 24, 166-172.	3.0	40
14	Modular material system for the microfabrication of biocompatible hydrogels based on thiol-ene-modified poly(vinyl alcohol). Journal of Polymer Science Part A, 2016, 54, 2060-2070.	2.3	36
15	Long Term Evaluation of Nanofibrous, Bioabsorbable Polycarbonate Urethane Grafts for Small Diameter Vessel Replacement in Rodents. European Journal of Vascular and Endovascular Surgery, 2020, 59, 643-652.	1.5	25
16	Surface characterization and protein interaction of a series of model poly[acrylonitrile-co-(N-vinyl) Tj ETQq0 0 0 0 87-96.	rgBT /Over 5.2	lock 10 Tf 50 22
17	Gelatin methacryloyl as environment for chondrocytes and cell delivery to superficial cartilage defects. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 207-222.	2.7	22
18	Hard Block Degradable Polycarbonate Urethanes: Promising Biomaterials for Electrospun Vascular	5.4	21

Prostheses. Biomacromolecules, 2020, 21, 376-387.

5.4 21

Stefan Baudis

#	Article	IF	CITATIONS
19	Hyaluronic acid vinyl esters: A toolbox toward controlling mechanical properties of hydrogels for 3D microfabrication. Journal of Polymer Science, 2020, 58, 1288-1298.	3.8	20
20	Physically and chemically gelling hydrogel formulations based on poly(ethylene glycol) diacrylate and Poloxamer 407. Polymer, 2017, 108, 21-28.	3.8	16
21	Thiol–Ene Cross-linking of Poly(ethylene glycol) within High Internal Phase Emulsions: Degradable Hydrophilic PolyHIPEs for Controlled Drug Release. Macromolecules, 2021, 54, 10370-10380.	4.8	16
22	Smart Polymers for Biomedical Applications. Macromolecular Chemistry and Physics, 2014, 215, 2399-2402.	2.2	14
23	Effect of diisocyanate linkers on the degradation characteristics of copolyester urethanes as potential drug carrier matrices. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 18-26.	4.3	14
24	A structural reconsideration: Linear aliphatic or alicyclic hard segments for biodegradable thermoplastic polyurethanes?. Journal of Polymer Science Part A, 2018, 56, 2214-2224.	2.3	13
25	Highâ€Throughput and Combinatorial Approaches for the Development of Multifunctional Polymers. Macromolecular Rapid Communications, 2022, 43, e2100400.	3.9	13
26	Durch sichtbares Licht und Nahinfrarotstrahlung abbaubare supramolekulare Metalloâ€Gele. Angewandte Chemie, 2017, 129, 16071-16075.	2.0	12
27	The interaction of adipose-derived human mesenchymal stem cells and polyether ether ketone. Clinical Hemorheology and Microcirculation, 2015, 61, 301-321.	1.7	11
28	Photopolymerizable Elastomers for Vascular Tissue Regeneration. Macromolecular Symposia, 2010, 296, 121-126.	0.7	10
29	Photopolymerizable precursors for degradable biomaterials based on acetal moieties. European Polymer Journal, 2021, 154, 110536.	5.4	10
30	Highâ€Throughput Synthesis as a Technology Platform for Copolymer Libraries. Macromolecular Symposia, 2014, 345, 105-111.	0.7	9
31	Toughness enhancers for bone scaffold materials based on biocompatible photopolymers. Journal of Polymer Science Part A, 2019, 57, 110-119.	2.3	9
32	Assessment of a long-term in vitro model to characterize the mechanical behavior and macrophage-mediated degradation of a novel, degradable, electrospun poly-urethane vascular graft. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 104077.	3.1	9
33	Guiding cell migration in 3D with high-resolution photografting. Scientific Reports, 2022, 12, .	3.3	8
34	High Throughput Characterization of Polymer Libraries by Diffuse Reflectance Infrared Spectroscopy. Macromolecular Materials and Engineering, 2014, 299, 1292-1297.	3.6	7
35	Study on Modified Dealkaline Lignin as Visible Light Macromolecular Photoinitiator for 3D Printing. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	6
36	Increasing the Microfabrication Performance of Synthetic Hydrogel Precursors through Molecular Design. Biomacromolecules, 2021, 22, 4919-4932.	5.4	6

Stefan Baudis

#	Article	IF	CITATIONS
37	Photopolymerizable Materials for Cell Encapsulation. , 2018, , 353-396.		5
38	Shapeâ€Memory Polymer Networks Prepared from Starâ€5haped Poly[(<i>L</i> ″actide)â€ <i>co</i> â€glycolide Precursors. Macromolecular Symposia, 2014, 345, 98-104.] _{0.7}	4
39	Single-Molecule Force Spectroscopy Reveals Adhesion-by-Demand in Statherin at the Protein–Hydroxyapatite Interface. Langmuir, 2020, 36, 13292-13300.	3.5	4
40	A disulfide-based linker for thiol–norbornene conjugation: formation and cleavage of hydrogels by the use of light. Polymer Chemistry, 2022, 13, 1158-1168.	3.9	4
41	Hybrid Hydrogel Networks by Photocrosslinking of Thermoresponsive α,ï‰â€łtaconylâ€PLGAâ€PEGâ€PLGA Mice in Water: Influence of the Lithium Phenylâ€2,4,6â€Trimethylbenzoylphosphinate Photoinitinator. Macromolecular Chemistry and Physics, 2020, 221, 2000165.	lles 2.2	3
42	Biomimetic adhesion motifs based on RAFT polymers with phosphonate groups. European Polymer Journal, 2021, 143, 110188.	5.4	3
43	Characterization of bi-layered magnetic nanoparticles synthesized via two-step surface-initiated ring-opening polymerization. Pure and Applied Chemistry, 2015, 87, 1085-1097.	1.9	2
44	3D-printing of Urethane-based Photoelastomers for Vascular Tissue Regeneration. Materials Research Society Symposia Proceedings, 2009, 1239, 1.	0.1	1
45	(Bio)degradable Urethane-Elastomers for Electrospun Vascular Grafts. Materials Research Society Symposia Proceedings, 2009, 1235, 1.	0.1	1
46	Robot Assisted Synthesis and Characterization of Polyester-based Polyurethanes. Materials Research Society Symposia Proceedings, 2015, 1718, 109-115.	0.1	1
47	Robot Assisted Polyurethane Chain Extension of Dihydroxy Telechelic Depsipeptides. MRS Advances, 2016, 1, 2003-2009.	0.9	1
48	Knochen, Knorpel und GefÃße maßschneidern mit Licht. Nachrichten Aus Der Chemie, 2016, 64, 406-410.	0.0	1
49	Polymer Networks for Enrichment of Calcium Ions. Polymers, 2021, 13, 3506.	4.5	1
50	Approaching new biomaterials: copolymerization characteristics of vinyl esters with norbornenes, allyl esters and allyl ethers. Polymer International, 2022, 71, 790-796.	3.1	1
51	Additive manufactured, biocompatible hydrogels based on hyaluronic acid. Frontiers in Bioengineering and Biotechnology, 0, 4, .	4.1	1
52	From macromolecules to materials to systems. Polymers for Advanced Technologies, 2014, 25, 1187-1188.	3.2	0
53	Poly(vinyl alcohol) based hydrogels for 3D biomaterial constructs. Frontiers in Bioengineering and Biotechnology, 0, 4, .	4.1	0
54	From space group to space groupoid: the partial symmetry of low-temperature <i>E</i> -vanillyl oxime. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 733-741.	1.1	0