Reiner Sebastian Sprick

List of Publications by Citations

Source: https://exaly.com/author-pdf/4975901/reiner-sebastian-sprick-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62
papers

4,154
citations

26
h-index

82
ext. papers

5,564
ext. citations

11.7
avg, IF

5.85
L-index

#	Paper	IF	Citations
62	Tunable organic photocatalysts for visible-light-driven hydrogen evolution. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3265-70	16.4	611
61	Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. <i>Nature Chemistry</i> , 2018 , 10, 1180-1189	17.6	526
60	Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. <i>Nature Energy</i> , 2019 , 4, 746-760	62.3	326
59	Visible-Light-Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 1792-6	16.4	288
58	A mobile robotic chemist. <i>Nature</i> , 2020 , 583, 237-241	50.4	239
57	Accelerated Discovery of Organic Polymer Photocatalysts for Hydrogen Evolution from Water through the Integration of Experiment and Theory. <i>Journal of the American Chemical Society</i> , 2019 , 141, 9063-9071	16.4	156
56	Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution. <i>Nature Communications</i> , 2018 , 9, 4968	17.4	153
55	Extended conjugated microporous polymers for photocatalytic hydrogen evolution from water. <i>Chemical Communications</i> , 2016 , 52, 10008-11	5.8	139
54	A stable covalent organic framework for photocatalytic carbon dioxide reduction. <i>Chemical Science</i> , 2020 , 11, 543-550	9.4	133
53	Visible-Light-Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts. <i>Angewandte Chemie</i> , 2016 , 128, 1824-1828	3.6	133
52	Photocatalytic Hydrogen Evolution from Water Using Fluorene and Dibenzothiophene Sulfone-Conjugated Microporous and Linear Polymers. <i>Chemistry of Materials</i> , 2019 , 31, 305-313	9.6	116
51	A Solution-Processable Polymer Photocatalyst for Hydrogen Evolution from Water. <i>Advanced Energy Materials</i> , 2017 , 7, 1700479	21.8	112
50	Structure-property relationships for covalent triazine-based frameworks: The effect of spacer length on photocatalytic hydrogen evolution from water. <i>Polymer</i> , 2017 , 126, 283-290	3.9	106
49	Tuning Photophysical Properties in Conjugated Microporous Polymers by Comonomer Doping Strategies. <i>Chemistry of Materials</i> , 2016 , 28, 3469-3480	9.6	90
48	Conjugated Polymers of Intrinsic Microporosity (C-PIMs). Advanced Functional Materials, 2014 , 24, 5219	-53264	76
47	Maximising the hydrogen evolution activity in organic photocatalysts by co-polymerisation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11994-12003	13	73
46	Nitrogen Containing Linear Poly(phenylene) Derivatives for Photo-catalytic Hydrogen Evolution from Water. <i>Chemistry of Materials</i> , 2018 , 30, 5733-5742	9.6	66

(2019-2019)

45	Emulsion polymerization derived organic photocatalysts for improved light-driven hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 2490-2496	13	64
44	Structurally Diverse Covalent Triazine-Based Framework Materials for Photocatalytic Hydrogen Evolution from Water. <i>Chemistry of Materials</i> , 2019 , 31, 8830-8838	9.6	62
43	Tracking Charge Transfer to Residual Metal Clusters in Conjugated Polymers for Photocatalytic Hydrogen Evolution. <i>Journal of the American Chemical Society</i> , 2020 , 142, 14574-14587	16.4	56
42	Acid catalyzed synthesis of carbonyl-functionalized microporous ladder polymers with high surface area. <i>Polymer Chemistry</i> , 2010 , 1, 283	4.9	53
41	Side-chain tuning in conjugated polymer photocatalysts for improved hydrogen production from water. <i>Energy and Environmental Science</i> , 2020 , 13, 1843-1855	35.4	51
40	Covalent Organic Framework Nanosheets Embedding Single Cobalt Sites for Photocatalytic Reduction of Carbon Dioxide. <i>Chemistry of Materials</i> , 2020 , 32, 9107-9114	9.6	32
39	Photocatalyst Z-scheme system composed of a linear conjugated polymer and BiVO4 for overall water splitting under visible light. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 16283-16290	13	32
38	Conjugated polymer donor-molecular acceptor nanohybrids for photocatalytic hydrogen evolution. <i>Chemical Communications</i> , 2020 , 56, 6790-6793	5.8	28
37	Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 7158-7170	13	26
36	Hydrogen evolution from water using heteroatom substituted fluorene conjugated co-polymers. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 8700-8705	13	26
35	Mapping binary copolymer property space with neural networks. <i>Chemical Science</i> , 2019 , 10, 4973-4984	9.4	24
34	Water Oxidation with Cobalt-Loaded Linear Conjugated Polymer Photocatalysts. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18695-18700	16.4	24
33	Polymer photocatalysts with plasma-enhanced activity. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 7125-7	139	22
32	Photocatalytic hydrogen production performance of 1-D ZnO nanostructures: Role of structural properties. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 31942-31951	6.7	22
31	Structure activity relationships in well-defined conjugated oligomer photocatalysts for hydrogen production from water. <i>Chemical Science</i> , 2020 , 11, 8744-8756	9.4	21
30	Structural Elucidation of Amorphous Photocatalytic Polymers from Dynamic Nuclear Polarization Enhanced Solid State NMR. <i>Macromolecules</i> , 2018 , 51, 3088-3096	5.5	17
29	Reprogramming bacterial protein organelles as a nanoreactor for hydrogen production. <i>Nature Communications</i> , 2020 , 11, 5448	17.4	17
28	Photocatalytically active ladder polymers. <i>Faraday Discussions</i> , 2019 , 215, 84-97	3.6	16

27	Reconstructed covalent organic frameworks <i>Nature</i> , 2022 , 604, 72-79	50.4	14
26	Triarylamine polymers of bridged phenylenes by (N-heterocyclic carbene)-palladium catalysed CN coupling. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 3327	7.1	13
25	Photocatalytic syngas production using conjugated organic polymers. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 4291-4296	13	13
24	Integrated Covalent Organic Framework/Carbon Nanotube Composite as Li-Ion Positive Electrode with Ultra-High Rate Performance. <i>Advanced Energy Materials</i> , 2021 , 11, 2101880	21.8	12
23	Organic materials as photocatalysts for water splitting. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 1622	2-1623	2 12
22	MetalBrganic conjugated microporous polymer containing a carbon dioxide reduction electrocatalyst. <i>Sustainable Energy and Fuels</i> , 2019 , 3, 2990-2994	5.8	11
21	(N-heterocyclic carbene)-Pd catalyzed synthesis of poly(triarylamine)s by Buchwald-Hartwig coupling of aryl chlorides. <i>Journal of Polymer Science Part A</i> , 2012 , 50, 4155-4160	2.5	11
20	Conjugated nanomaterials for solar fuel production. <i>Nanoscale</i> , 2021 , 13, 634-646	7.7	11
19	Photocatalytic polymers of intrinsic microporosity for hydrogen production from water. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 19958-19964	13	11
18	Extended conjugation in poly(triarylamine)s: synthesis, structure and impact on field-effect mobility. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 6520-6528	7.1	10
17	Synthesis of poly(triarylamine)s by CN coupling catalyzed by (N-heterocyclic carbene)-palladium complexes. <i>Reactive and Functional Polymers</i> , 2012 , 72, 337-340	4.6	10
16	Crosslinked Polyimide and Reduced Graphene Oxide Composites as Long Cycle Life Positive Electrode for Lithium-Ion Cells. <i>ChemSusChem</i> , 2020 , 13, 5571-5579	8.3	9
15	Bottom-up wet-chemical synthesis of a two-dimensional porous carbon material with high supercapacitance using a cascade coupling/cyclization route. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 3303-3308	13	8
14	(N-Heterocyclic carbene)Pd(triethylamine)Cl2 as precatalyst for the synthesis of Poly(triarylamine)s. <i>Journal of Polymer Science Part A</i> , 2013 , 51, 4904-4911	2.5	7
13	Water Oxidation with Cobalt-Loaded Linear Conjugated Polymer Photocatalysts. <i>Angewandte Chemie</i> , 2020 , 132, 18854-18859	3.6	6
12	Nano-assemblies of a soluble conjugated organic polymer and an inorganic semiconductor for sacrificial photocatalytic hydrogen production from water. <i>Nanoscale</i> , 2020 , 12, 24488-24494	7.7	6
11	Acetylene-linked conjugated polymers for sacrificial photocatalytic hydrogen evolution from water. Journal of Materials Chemistry A, 2021 , 9, 17242-17248	13	5
10	Aromatic polymers made by reductive polydehalogenation of oligocyclic monomers as conjugated polymers of intrinsic microporosity (C-PIMs). <i>Polymer Chemistry</i> , 2019 , 10, 5200-5205	4.9	4

LIST OF PUBLICATIONS

9)	Synthetic approaches to artificial photosynthesis: general discussion. <i>Faraday Discussions</i> , 2019 , 215, 242-281	3.6	4	
8	3	Photocatalytic Hydrogen Evolution from Water Using Heterocyclic Conjugated Microporous Polymers: Porous or Non-Porous?		3	
7	7	Impact of Chemical Structure on the Dynamics of Mass Transfer of Water in Conjugated Microporous Polymers: A Neutron Spectroscopy Study. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 765-776	4.3	3	
6	6	Berichtigung: Visible-Light-Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts. <i>Angewandte Chemie</i> , 2018 , 130, 2546-2546	3.6	2	
5	5	Time-Resolved Raman Spectroscopy of Polaron Formation in a Polymer Photocatalyst. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 10899-10905	6.4	2	
4	1	Photocatalytic Hydrogen Evolution from Water Using Heterocyclic Conjugated Microporous Polymers: Porous or Non-Porous?		2	
3	3	Effect of substituting non-polar chains with polar chains on the structural dynamics of small organic molecule and polymer semiconductors. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 7462-7471	3.6	2	
2	2	Demonstrator devices for artificial photosynthesis: general discussion. <i>Faraday Discussions</i> , 2019 , 215, 345-363	3.6	1	
1	Ĺ	Probing Dynamics of Water Mass Transfer in Organic Porous Photocatalyst Water-Splitting Materials by Neutron Spectroscopy. <i>Chemistry of Materials</i> , 2021 , 33, 1363-1372	9.6	1	