Wilfried Thuiller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4975548/publications.pdf

Version: 2024-02-01

329 papers 64,348 citations

1111 h-index

239 g-index

346 all docs

 $\begin{array}{c} 346 \\ \text{docs citations} \end{array}$

346 times ranked

44353 citing authors

#	Article	IF	Citations
1	Predicting species distribution: offering more than simple habitat models. Ecology Letters, 2005, 8, 993-1009.	6.4	4,859
2	Impacts of climate change on the future of biodiversity. Ecology Letters, 2012, 15, 365-377.	6.4	2,720
3	Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8245-8250.	7.1	1,913
4	BIOMOD – a platform for ensemble forecasting of species distributions. Ecography, 2009, 32, 369-373.	4.5	1,796
5	Selecting pseudoâ€nbsences for species distribution models: how, where and how many?. Methods in Ecology and Evolution, 2012, 3, 327-338.	5. 2	1,658
6	Ecosystem Service Supply and Vulnerability to Global Change in Europe. Science, 2005, 310, 1333-1337.	12.6	1,355
7	Validation of species-climate impact models under climate change. Global Change Biology, 2005, 11, 1504-1513.	9.5	1,209
8	Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 2012, 21, 481-497.	5.8	1,130
9	Crossâ€validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 2017, 40, 913-929.	4.5	1,092
10	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
11	Alien species in a warmer world: risks and opportunities. Trends in Ecology and Evolution, 2009, 24, 686-693.	8.7	1,031
12	Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions, 2009, 15, 59-69.	4.1	990
13	Predicting global change impacts on plant species' distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 9, 137-152.	2.7	966
14	Model-based uncertainty in species range prediction. Journal of Biogeography, 2006, 33, 1704-1711.	3.0	804
15	Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography, 2006, 30, 751-777.	3.2	787
16	BIOMOD - optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology, 2003, 9, 1353-1362.	9.5	774
17	How to measure and test phylogenetic signal. Methods in Ecology and Evolution, 2012, 3, 743-756.	5.2	7 59
18	Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology, 2005, 11 , 2234-2250.	9.5	742

#	Article	IF	CITATIONS
19	Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecology Letters, 2010, 13, 1030-1040.	6.4	721
20	Patterns and uncertainties of species' range shifts under climate change. Global Change Biology, 2004, 10, 2020-2027.	9.5	704
21	Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography, 2004, 27, 437-448.	4.5	665
22	Climate change threatens European conservation areas. Ecology Letters, 2011, 14, 484-492.	6.4	660
23	Rare Species Support Vulnerable Functions in High-Diversity Ecosystems. PLoS Biology, 2013, 11, e1001569.	5. 6	654
24	Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biology, 2004, 10, 1618-1626.	9.5	606
25	Biodiversity and Climate Change: Integrating Evolutionary and Ecological Responses of Species and Communities. Annual Review of Ecology, Evolution, and Systematics, 2010, 41, 321-350.	8.3	585
26	Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change, 2012, 2, 619-622.	18.8	582
27	Defining and measuring ecological specialization. Journal of Applied Ecology, 2010, 47, 15-25.	4.0	568
28	Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biology Letters, 2008, 4, 560-563.	2.3	552
29	Climate change and the ecologist. Nature, 2007, 448, 550-552.	27.8	538
30	Uncertainty in ensemble forecasting of species distribution. Global Change Biology, 2010, 16, 1145-1157.	9 . 5	537
31	Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology, 2010, 98, 604-613.	4.0	513
32	Effects of restricting environmental range of data to project current and future species distributions. Ecography, 2004, 27, 165-172.	4.5	479
33	21st century climate change threatens mountain flora unequally across Europe. Global Change Biology, 2011, 17, 2330-2341.	9.5	478
34	Will climate change promote future invasions?. Global Change Biology, 2013, 19, 3740-3748.	9.5	477
35	Consequences of climate change on the tree of life in Europe. Nature, 2011, 470, 531-534.	27.8	460
36	Climate change and plant distribution: local models predict highâ€elevation persistence. Global Change Biology, 2009, 15, 1557-1569.	9.5	450

#	Article	IF	CITATIONS
37	Niche properties and geographical extent as predictors of species sensitivity to climate change. Global Ecology and Biogeography, 2005, 14, 347-357.	5.8	448
38	What do we gain from simplicity versus complexity in species distribution models?. Ecography, 2014, 37, 1267-1281.	4.5	438
39	A multiâ€ŧrait approach reveals the structure and the relative importance of intra―vs. interspecific variability in plant traits. Functional Ecology, 2010, 24, 1192-1201.	3.6	420
40	Outstanding Challenges in the Transferability of Ecological Models. Trends in Ecology and Evolution, 2018, 33, 790-802.	8.7	403
41	Combining the fourthâ€corner and the RLQ methods for assessing trait responses to environmental variation. Ecology, 2014, 95, 14-21.	3.2	398
42	A standard protocol for reporting species distribution models. Ecography, 2020, 43, 1261-1277.	4.5	397
43	Comparing niche―and processâ€based models to reduce prediction uncertainty in species range shifts under climate change. Ecology, 2009, 90, 1301-1313.	3.2	377
44	Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nature Communications, 2017, 8, 14319.	12.8	357
45	Do we need landâ€cover data to model species distributions in Europe?. Journal of Biogeography, 2004, 31, 353-361.	3.0	353
46	Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecology Letters, 2012, 15, 584-593.	6.4	352
47	Ecophylogenetics: advances and perspectives. Biological Reviews, 2012, 87, 769-785.	10.4	341
48	Prediction and validation of the potential global distribution of a problematic alien invasive species â€" the American bullfrog. Diversity and Distributions, 2007, 13, 476-485.	4.1	321
49	Climatic extremes improve predictions of spatial patterns of tree species. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19723-19728.	7.1	314
50	Impacts of climate change on the world's most exceptional ecoregions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2306-2311.	7.1	312
51	Residence time and potential range: crucial considerations in modelling plant invasions. Diversity and Distributions, 2007, 13, 11-22.	4.1	295
52	Invasive species distribution models – how violating the equilibrium assumption can create new insights. Global Ecology and Biogeography, 2012, 21, 1126-1136.	5.8	294
53	A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, 2019, 89, e01370.	5.4	290
54	Predicting potential distributions of invasive species: where to go from here?. Diversity and Distributions, 2010, 16, 331-342.	4.1	284

#	Article	IF	Citations
55	Competitive interactions between forest trees are driven by species' trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecology Letters, 2012, 15, 831-840.	6.4	284
56	Vulnerability of biodiversity hotspots to global change. Global Ecology and Biogeography, 2014, 23, 1376-1386.	5.8	282
57	INTERACTIONS BETWEEN ENVIRONMENT, SPECIES TRAITS, AND HUMAN USES DESCRIBE PATTERNS OF PLANT INVASIONS. Ecology, 2006, 87, 1755-1769.	3.2	272
58	Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Diversity and Distributions, 2009, 15, 409-420.	4.1	263
59	Functional Rarity: The Ecology of Outliers. Trends in Ecology and Evolution, 2017, 32, 356-367.	8.7	258
60	Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Global Change Biology, 2006, 12, 424-440.	9.5	254
61	Generalized models vs. classification tree analysis: Predicting spatial distributions of plant species at different scales. Journal of Vegetation Science, 2003, 14, 669-680.	2.2	251
62	Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography, 2013, 36, 393-402.	4.5	250
63	Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Diversity and Distributions, 2006, 12, 49-60.	4.1	248
64	RELATING PLANT TRAITS AND SPECIES DISTRIBUTIONS ALONG BIOCLIMATIC GRADIENTS FOR 88 LEUCADENDRON TAXA. Ecology, 2004, 85, 1688-1699.	3.2	242
65	The partitioning of diversity: showing Theseus a way out of the labyrinth. Journal of Vegetation Science, 2010, 21, 992-1000.	2.2	242
66	REVIEW: Predictive ecology in a changing world. Journal of Applied Ecology, 2015, 52, 1293-1310.	4.0	237
67	Uncertainty in ensembles of global biodiversity scenarios. Nature Communications, 2019, 10, 1446.	12.8	236
68	Do geographic distribution, niche property and life form explain plants' vulnerability to global change?. Global Change Biology, 2006, 12, 1079-1093.	9.5	229
69	Unpacking ecosystem service bundles: Towards predictive mapping of synergies and trade-offs between ecosystem services. Global Environmental Change, 2017, 47, 37-50.	7.8	229
70	Assessing species and community functional responses to environmental gradients: which multivariate methods?. Journal of Vegetation Science, 2012, 23, 805-821.	2.2	228
71	Climate change hastens the turnover of stream fish assemblages. Global Change Biology, 2008, 14, 2232-2248.	9.5	226
72	Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. Journal of Vegetation Science, 2009, 20, 475-486.	2.2	226

#	Article	IF	CITATIONS
73	Downscaling European species atlas distributions to a finer resolution: implications for conservation planning. Global Ecology and Biogeography, 2005, 14, 17-30.	5.8	218
74	Uncertainty in predictions of extinction risk. Nature, 2004, 430, 34-34.	27.8	216
75	Resolving Darwin's naturalization conundrum: a quest for evidence. Diversity and Distributions, 2010, 16, 461-475.	4.1	216
76	A road map for integrating ecoâ€evolutionary processes into biodiversity models. Ecology Letters, 2013, 16, 94-105.	6.4	215
77	Quantifying the relevance of intraspecific trait variability for functional diversity. Methods in Ecology and Evolution, 2011, 2, 163-174.	5.2	210
78	Large conservation gains possible for global biodiversity facets. Nature, 2017, 546, 141-144.	27.8	209
79	Model averaging in ecology: a review of Bayesian, informationâ€theoretic, and tactical approaches for predictive inference. Ecological Monographs, 2018, 88, 485-504.	5.4	209
80	Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate changeâ€"Range, abundance, genetic diversity and adaptive response. Forest Ecology and Management, 2010, 259, 2213-2222.	3.2	206
81	Functional species pool framework to test for biotic effects on community assembly. Ecology, 2012, 93, 2263-2273.	3.2	205
82	Scale effects in species distribution models: implications for conservation planning under climate change. Biology Letters, 2009, 5, 39-43.	2.3	204
83	Comparing species interaction networks along environmental gradients. Biological Reviews, 2018, 93, 785-800.	10.4	203
84	The Mediterranean Sea as a  culâ€deâ€sac' for endemic fishes facing climate change. Global Change Biology, 2010, 16, 3233-3245.	9.5	201
85	Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecology Letters, 2012, 15, 533-544.	6.4	197
86	The influence of interspecific interactions on species range expansion rates. Ecography, 2014, 37, 1198-1209.	4.5	196
87	The fate of <scp>E</scp> uropean breeding birds under climate, landâ€use and dispersal scenarios. Global Change Biology, 2012, 18, 881-890.	9.5	195
88	Beyond taxonomic diversity patterns: how do \hat{l}_{\pm} , \hat{l}^2 and \hat{l}^3 components of bird functional and phylogenetic diversity respond to environmental gradients across France?. Global Ecology and Biogeography, 2011, 20, 893-903.	5.8	193
89	Ensemble models predict Important Bird Areas in southern Africa will become less effective for conserving endemic birds under climate change. Global Ecology and Biogeography, 2009, 18, 701-710.	5. 8	191
90	Biotic and abiotic variables show little redundancy in explaining tree species distributions. Ecography, 2010, 33, 1038-1048.	4.5	182

#	Article	IF	Citations
91	Withinâ€ŧaxon niche structure: niche conservatism, divergence and predicted effects of climate change. Ecography, 2010, 33, 990-1003.	4. 5	181
92	Benchmarking novel approaches for modelling speciesÂrange dynamics. Global Change Biology, 2016, 22, 2651-2664.	9.5	180
93	On the importance of intraspecific variability for the quantification of functional diversity. Oikos, 2012, 121, 116-126.	2.7	167
94	Genetic consequences of climate change for northern plants. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2042-2051.	2.6	162
95	Broadâ€scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Molecular Ecology, 2012, 21, 3729-3738.	3.9	161
96	A changing climate is eroding the geographical range of the Namib Desert tree <i>Aloe</i> through population declines and dispersal lags. Diversity and Distributions, 2007, 13, 645-653.	4.1	157
97	A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nature Communications, 2017, 8, 15399.	12.8	153
98	The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecological Modelling, 2009, 220, 3512-3520.	2.5	150
99	Consensual predictions of potential distributional areas for invasive species: a case study of Argentine ants in the Iberian Peninsula. Biological Invasions, 2009, 11, 1017-1031.	2.4	144
100	Protected areas offer refuge from invasive species spreading under climate change. Global Change Biology, 2017, 23, 5331-5343.	9.5	142
101	Climate and land use change impacts on plant distributions in Germany. Biology Letters, 2008, 4, 564-567.	2.3	138
102	How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models?. Ecography, 2010, 33, 878-886.	4.5	138
103	Global determinants of zoogeographical boundaries. Nature Ecology and Evolution, 2017, 1, 89.	7.8	138
104	Tracking genes of ecological relevance using a genome scan in two independent regional population samples of Arabis alpina. Molecular Ecology, 2010, 19, 2896-2907.	3.9	136
105	Limited evolutionary rescue of locally adapted populations facing climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120083.	4.0	136
106	Environmental and human factors influencing rare plant local occurrence, extinction and persistence: a 115-year study in the Mediterranean region. Journal of Biogeography, 2005, 32, 799-811.	3.0	133
107	Accuracy of resource selection functions across spatial scales. Diversity and Distributions, 2006, 12, 288-297.	4.1	130
108	Body size determines soil community assembly in a tropical forest. Molecular Ecology, 2019, 28, 528-543.	3.9	129

#	Article	IF	CITATIONS
109	Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Global Ecology and Biogeography, 2003, 12, 313-325.	5.8	127
110	Forecasting changes in population genetic structure of alpine plants in response to global warming. Molecular Ecology, 2012, 21, 2354-2368.	3.9	127
111	Does probability of occurrence relate to population dynamics?. Ecography, 2014, 37, 1155-1166.	4.5	127
112	Editorial commentary on <scp>BIOMOD</scp> – optimizing predictions of species distributions and projecting potential future shifts under global change'. Global Change Biology, 2014, 20, 3591-3592.	9.5	126
113	PLANT-TRAIT-BASED MODELING ASSESSMENT OF ECOSYSTEM-SERVICE SENSITIVITY TO LAND-USE CHANGE. , 2007, 17, 2377-2386.		124
114	Niche breadth, rarity and ecological characteristics within a regional flora spanning large environmental gradients. Journal of Biogeography, 2012, 39, 204-214.	3.0	123
115	The meaning of functional trait composition of food webs for ecosystem functioning. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150268.	4.0	119
116	Influence of tree shape and evolutionary timeâ€scale on phylogenetic diversity metrics. Ecography, 2016, 39, 913-920.	4.5	118
117	Low Connectivity between Mediterranean Marine Protected Areas: A Biophysical Modeling Approach for the Dusky Grouper Epinephelus marginatus. PLoS ONE, 2013, 8, e68564.	2.5	117
118	Home away from home â€" objective mapping of highâ€risk source areas for plant introductions. Diversity and Distributions, 2007, 13, 299-312.	4.1	115
119	Potential impacts of future land use and climate change on the Red List status of the Proteaceae in the Cape Floristic Region, South Africa. Global Change Biology, 2005, 11, 1452-1468.	9.5	113
120	Disentangling the drivers of metacommunity structure across spatial scales. Journal of Biogeography, 2013, 40, 1560-1571.	3.0	113
121	Will Climate Change Promote Alien Plant Invasions?. , 2008, , 197-211.		112
122	Knowing the past to predict the future: landâ€use change and the distribution of invasive bullfrogs. Global Change Biology, 2010, 16, 528-537.	9.5	112
123	Sampling in ecology and evolution – bridging the gap between theory and practice. Ecography, 2010, 33, 1028-1037.	4.5	111
124	Multifaceted diversity–area relationships reveal global hotspots of mammalian species, trait and lineage diversity. Global Ecology and Biogeography, 2014, 23, 836-847.	5.8	110
125	Endemic species and ecosystem sensitivity to climate change in Namibia. Global Change Biology, 2006, 12, 759-776.	9 . 5	108
126	Model complexity affects species distribution projections under climate change. Journal of Biogeography, 2020, 47, 130-142.	3.0	106

#	Article	IF	CITATIONS
127	Do joint species distribution models reliably detect interspecific interactions from coâ€occurrence data in homogenous environments?. Ecography, 2018, 41, 1812-1819.	4.5	105
128	Phylogenetic niche conservatism – common pitfalls and ways forward. Functional Ecology, 2015, 29, 627-639.	3.6	104
129	Protecting Biodiversity (in All Its Complexity): New Models and Methods. Trends in Ecology and Evolution, 2020, 35, 1119-1128.	8.7	101
130	Effects of competition on tree radialâ€growth vary in importance but not in intensity along climatic gradients. Journal of Ecology, 2011, 99, 300-312.	4.0	100
131	From introduction to the establishment of alien species: bioclimatic differences between presence and reproduction localities in the slider turtle. Diversity and Distributions, 2009, 15, 108-116.	4.1	97
132	Predicting patterns of plant species richness in megadiverse South Africa. Ecography, 2006, 29, 733-744.	4.5	96
133	Land ahead: using genome scans to identify molecular markers of adaptive relevance. Plant Ecology and Diversity, 2008, 1, 273-283.	2.4	94
134	Matches and mismatches between national and EU-wide priorities: Examining the Natura 2000 network in vertebrate species conservation. Biological Conservation, 2016, 198, 193-201.	4.1	94
135	Ensemble distribution models in conservation prioritization: from consensus predictions to consensus reserve networks. Diversity and Distributions, 2014, 20, 309-321.	4.1	92
136	From species distributions to metaâ€communities. Ecology Letters, 2015, 18, 1321-1328.	6.4	92
137	Asynchrony of taxonomic, functional and phylogenetic diversity in birds. Global Ecology and Biogeography, 2014, 23, 780-788.	5.8	91
138	Assessing rapid evolution in a changing environment. Trends in Ecology and Evolution, 2010, 25, 692-698.	8.7	89
139	Crossâ€scale integration of knowledge for predicting species ranges: a metamodelling framework. Global Ecology and Biogeography, 2016, 25, 238-249.	5.8	88
140	Climate change will increase the naturalization risk from garden plants in Europe. Global Ecology and Biogeography, 2017, 26, 43-53.	5.8	87
141	What it takes to invade grassland ecosystems: traits, introduction history and filtering processes. Ecology Letters, 2016, 19, 219-229.	6.4	86
142	Long-distance migratory birds threatened by multiple independent risks from global change. Nature Climate Change, 2018, 8, 992-996.	18.8	86
143	Are species' responses to global change predicted by past niche evolution?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120091.	4.0	83
144	Dos and don'ts when inferring assembly rules from diversity patterns. Global Ecology and Biogeography, 2020, 29, 1212-1229.	5.8	83

#	Article	IF	CITATIONS
145	Phylogenetic patterns of climatic, habitat and trophic niches in a <scp>E</scp> uropean avian assemblage. Global Ecology and Biogeography, 2014, 23, 414-424.	5.8	81
146	Macroecology in the age of Big Data – Where to go from here?. Journal of Biogeography, 2020, 47, 1-12.	3.0	81
147	Variation in habitat suitability does not always relate to variation in species' plant functional traits. Biology Letters, 2010, 6, 120-123.	2.3	80
148	Global drivers of population density in terrestrial vertebrates. Global Ecology and Biogeography, 2018, 27, 968-979.	5.8	80
149	Largeâ€scale earlyâ€wilting response of Central European forests to the 2018 extreme drought. Global Change Biology, 2020, 26, 7021-7035.	9.5	80
150	Building megaphylogenies for macroecology: taking up the challenge. Ecography, 2013, 36, 13-26.	4.5	79
151	Extinction risk of North American seed plants elevated by climate and landâ€use change. Journal of Applied Ecology, 2017, 54, 303-312.	4.0	79
152	Extinction debt and colonization credit delay range shifts of eastern North American trees. Nature Ecology and Evolution, 2017, 1 , .	7.8	79
153	Observed long-term greening of alpine vegetation—a case study in the French Alps. Environmental Research Letters, 2017, 12, 114006.	5.2	79
154	Potential impacts of climate change on the winter distribution of Afro-Palaearctic migrant passerines. Biology Letters, 2009, 5, 248-251.	2.3	78
155	Editorial commentary on â€~Patterns and uncertainties of species' range shifts under climate change'. Global Change Biology, 2014, 20, 3593-3594.	9.5	78
156	From environmental DNA sequences to ecological conclusions: How strong is the influence of methodological choices?. Journal of Biogeography, 2020, 47, 193-206.	3.0	76
157	On the Interpretations of Joint Modeling in Community Ecology. Trends in Ecology and Evolution, 2021, 36, 391-401.	8.7	75
158	A matter of scale: apparent niche differentiation of diploid and tetraploid plants may depend on extent and grain of analysis. Journal of Biogeography, 2016, 43, 716-726.	3.0	73
159	Spatial scale and intraspecific trait variability mediate assembly rules in alpine grasslands. Journal of Ecology, 2017, 105, 277-287.	4.0	73
160	Species richness of alien plants in South Africa: Environmental correlates and the relationship with indigenous plant species richness. Ecoscience, 2005, 12, 391-402.	1.4	72
161	Assessing the vulnerability of European butterflies to climate change using multiple criteria. Biodiversity and Conservation, 2010, 19, 695-723.	2.6	71
162	Additive effects of climate change on connectivity between marine protected areas and larval supply to fished areas. Diversity and Distributions, 2015, 21, 139-150.	4.1	71

#	Article	IF	Citations
163	Climate change and birds: perspectives and prospects from southern Africa. Ostrich, 2004, 75, 295-308.	1.1	70
164	Reopening the climate envelope reveals macroscale associations with climate in European birds. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E45-6; author reply E41-3.	7.1	70
165	Conserving the functional and phylogenetic trees of life of European tetrapods. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140005.	4.0	70
166	RECONSTRUCTING THE ORIGINS OF HIGH-ALPINE NICHES AND CUSHION LIFE FORM IN THE GENUS ANDROSACE S.L. (PRIMULACEAE). Evolution; International Journal of Organic Evolution, 2012, 66, 1255-1268.	2.3	69
167	Trait structure and redundancy determine sensitivity to disturbance in marine fish communities. Global Change Biology, 2019, 25, 3424-3437.	9.5	68
168	Spatial mismatch of phylogenetic diversity across three vertebrate groups and protected areas in Europe. Diversity and Distributions, 2014, 20, 674-685.	4.1	67
169	Stochastic Species Turnover and Stable Coexistence in a Species-Rich, Fire-Prone Plant Community. PLoS ONE, 2007, 2, e938.	2.5	67
170	How species traits and affinity to urban land use control largeâ€scale species frequency. Diversity and Distributions, 2009, 15, 533-546.	4.1	66
171	Social representations of an alpine grassland landscape and socio-political discourses on rural development. Regional Environmental Change, 2010, 10, 119-130.	2.9	64
172	The productivity-biodiversity relationship varies across diversity dimensions. Nature Communications, 2019, 10, 5691.	12.8	64
173	Scale decisions can reverse conclusions on community assembly processes. Global Ecology and Biogeography, 2014, 23, 620-632.	5.8	63
174	The dimensionality and structure of species trait spaces. Ecology Letters, 2021, 24, 1988-2009.	6.4	63
175	Disentangling the relative effects of environmental versus human factors on the abundance of native and alien plant species in Mediterranean sandy shores. Diversity and Distributions, 2010, 16, 537-546.	4.1	62
176	Improving plant functional groups for dynamic models of biodiversity: at the crossroads between functional and community ecology. Global Change Biology, 2012, 18, 3464-3475.	9.5	62
177	Darwin's naturalization hypothesis: scale matters in coastal plant communities. Ecography, 2013, 36, 560-568.	4.5	62
178	Potential Impacts of Climate Change on Ecosystem Services in Europe: The Case of Pest Control by Vertebrates. BioScience, 2012, 62, 658-666.	4.9	61
179	A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geoscientific Model Development, 2018, 11, 4537-4562.	3.6	61
180	Global distribution and conservation status of ecologically rare mammal and bird species. Nature Communications, 2020, $11,5071$.	12.8	61

#	Article	IF	CITATIONS
181	Thermal niches are more conserved at cold than warm limits in arcticâ€alpine plant species. Global Ecology and Biogeography, 2013, 22, 933-941.	5.8	60
182	The Treasure Vault Can be Opened: Large-Scale Genome Skimming Works Well Using Herbarium and Silica Gel Dried Material. Plants, 2020, 9, 432.	3. 5	59
183	Replicated radiations of the alpine genus <i><scp>A</scp>ndrosace</i> (Primulaceae) driven by range expansion and convergent key innovations. Journal of Biogeography, 2013, 40, 1874-1886.	3.0	57
184	BioMove $\hat{a}\in$ " an integrated platform simulating the dynamic response of species to environmental change. Ecography, 2010, 33, 612-616.	4.5	56
185	Potential distribution range of invasive plant species in Spain. NeoBiota, 0, 12, 25-40.	1.0	56
186	Understanding the evolution of holoparasitic plants: the complete plastid genome of the holoparasite <i>Cytinus hypocistis</i> (Cytinaceae). Annals of Botany, 2016, 118, 885-896.	2.9	55
187	The †Hutchinsonian niche†as an assemblage of demographic niches: implications for species geographic ranges. Ecography, 2018, 41, 1103-1113.	4.5	55
188	Simulating plant invasion dynamics in mountain ecosystems under global change scenarios. Global Change Biology, 2018, 24, e289-e302.	9.5	54
189	Influence of climate, soil, and land cover on plant species distribution in the European Alps. Ecological Monographs, 2021, 91, e01433.	5.4	54
190	Landâ€use change and subalpine tree dynamics: colonization of <i>Larix decidua </i> in French subalpine grasslands. Journal of Applied Ecology, 2008, 45, 659-669.	4.0	52
191	Dangers of predicting bird species distributions in response to land over changes. Ecological Applications, 2009, 19, 538-549.	3.8	52
192	An ecosystem modelâ€based estimate of changes in water availability differs from water proxies that are commonly used in species distribution models. Global Ecology and Biogeography, 2009, 18, 304-313.	5. 8	52
193	The European functional tree of bird life in the face of global change. Nature Communications, 2014, 5, 3118.	12.8	52
194	Neutral Biogeography and the Evolution of Climatic Niches. American Naturalist, 2014, 183, 573-584.	2.1	52
195	Are different facets of plant diversity well protected against climate and land cover changes? A test study in the French Alps. Ecography, 2014, 37, 1254-1266.	4.5	52
196	Predicting range shifts of northern bird species: Influence of modelling technique and topography. Acta Oecologica, 2010, 36, 269-281.	1.1	51
197	Potential responses of terrestrial biodiversity in Southern Africa to anthropogenic climate change. Regional Environmental Change, 2011, 11, 127-135.	2.9	51
198	<i>Nâ€</i> dimensional hypervolumes to study stability of complex ecosystems. Ecology Letters, 2016, 19, 729-742.	6.4	51

#	Article	IF	Citations
199	<i>Fagus sylvatica /i> L. recruitment across a fragmented Mediterranean Landscape, importance of long distance effective dispersal, abiotic conditions and biotic interactions. Diversity and Distributions, 2007, 13, 799-807.</i>	4.1	50
200	Functional trait differences and trait plasticity mediate biotic resistance to potential plant invaders. Journal of Ecology, 2018, 106, 1607-1620.	4.0	50
201	Accommodating scenarios of climate change and management in modelling the distribution of the invasive tree <i>Schinus molle</i> in South Africa. Ecography, 2010, 33, 1049-1061.	4.5	49
202	Diversity indices for ecological networks: a unifying framework using Hill numbers. Ecology Letters, 2019, 22, 737-747.	6.4	49
203	Reconstructing the geographic and climatic origins of longâ€distance bird migrations. Journal of Biogeography, 2020, 47, 155-166.	3.0	49
204	A comparison of predictive methods in modelling the distribution of periglacial landforms in Finnish Lapland. Earth Surface Processes and Landforms, 2008, 33, 2241-2254.	2.5	48
205	Statistical consensus methods for improving predictive geomorphology maps. Computers and Geosciences, 2009, 35, 615-625.	4.2	47
206	Using summed individual species models and state-of-the-art modelling techniques to identify threatened plant species hotspots. Biological Conservation, 2009, 142, 2501-2509.	4.1	46
207	The Contribution of Vegetation and Landscape Configuration for Predicting Environmental Change Impacts on Iberian Birds. PLoS ONE, 2011, 6, e29373.	2.5	46
208	Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities. Annals of Botany, 2015, 116, 1023-1034.	2.9	46
209	Global patterns of βâ€diversity along the phylogenetic timeâ€scale: The role of climate and plate tectonics. Global Ecology and Biogeography, 2017, 26, 1211-1221.	5.8	46
210	European ornamental garden flora as an invasion debt under climate change. Journal of Applied Ecology, 2018, 55, 2386-2395.	4.0	45
211	Extending networks of protected areas to optimize connectivity and population growth rate. Ecography, 2015, 38, 273-282.	4.5	43
212	Anticipating the spatioâ€temporal response of plant diversity and vegetation structure to climate and land use change in a protected area. Ecography, 2014, 37, 1230-1239.	4.5	42
213	Contrasting the effects of environment, dispersal and biotic interactions to explain the distribution of invasive plants in alpine communities. Biological Invasions, 2015, 17, 1407-1423.	2.4	42
214	Incorporating the effects of changes in vegetation functioning and CO ₂ on water availability in plant habitat models. Biology Letters, 2008, 4, 556-559.	2.3	41
215	Ecological niche and species traits: key drivers of regional plant invader assemblages. Biological Invasions, 2012, 14, 1963-1980.	2.4	41
216	Developing an approach to defining the potential distributions of invasive plant species: a case study of <i>Hakea</i> species in South Africa. Global Ecology and Biogeography, 2008, 17, 569-584.	5.8	40

#	Article	IF	Citations
217	On the importance of edaphic variables to predict plant species distributions $\hat{a} \in \text{``limits}$ and prospects. Journal of Vegetation Science, 2013, 24, 591-592.	2.2	40
218	Statistical ecology comes of age. Biology Letters, 2014, 10, 20140698.	2.3	40
219	Mapping the imprint of biotic interactions on βâ€diversity. Ecology Letters, 2018, 21, 1660-1669.	6.4	40
220	Modelling the impact of <i>Hieracium</i> spp. on protected areas in Australia under future climates. Ecography, 2009, 32, 757-764.	4.5	39
221	Spatial Predictions of Phylogenetic Diversity in Conservation Decision Making. Conservation Biology, 2011, 25, 1229-1239.	4.7	39
222	Unravelling the architecture of functional variability in wild populations of <i>Polygonum viviparum (i) L. Functional Ecology, 2013, 27, 382-391.</i>	3.6	39
223	Disjunct populations of <scp>E</scp> uropean vascular plant species keep the same climatic niches. Global Ecology and Biogeography, 2015, 24, 1401-1412.	5.8	39
224	Balancing conservation priorities for nature and for people in Europe. Science, 2021, 372, 856-860.	12.6	39
225	From introduction to equilibrium: reconstructing the invasive pathways of the Argentine ant in a Mediterranean region. Global Change Biology, 2009, 15, 2101-2115.	9.5	38
226	Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species distributions across the Alps. Ecography, 2015, 38, 578-589.	4.5	38
227	Continentalâ€scale determinants of population trends in European amphibians and reptiles. Global Change Biology, 2019, 25, 3504-3515.	9.5	38
228	Unveiling the food webs of tetrapods across Europe through the prism of the Eltonian niche. Journal of Biogeography, 2020, 47, 181-192.	3.0	38
229	The CC-Bio Project: Studying the Effects of Climate Change on Quebec Biodiversity. Diversity, 2010, 2, 1181-1204.	1.7	37
230	Misleading results from conventional gap analysis – Messages from the warming north. Biological Conservation, 2011, 144, 2450-2458.	4.1	36
231	Gains and losses of plant species and phylogenetic diversity for a northern highâ€latitude region. Diversity and Distributions, 2015, 21, 1441-1454.	4.1	36
232	Assessing the reliability of predicted plant trait distributions at the global scale. Global Ecology and Biogeography, 2020, 29, 1034-1051.	5.8	36
233	Benchmarking bioinformatic tools for fast and accurate eDNA metabarcoding species identification. Molecular Ecology Resources, 2021, 21, 2565-2579.	4.8	35
234	Dynamics of Ecological Communities Following Current Retreat of Glaciers. Annual Review of Ecology, Evolution, and Systematics, 2021, 52, 405-426.	8.3	35

#	Article	IF	CITATIONS
235	Ecological network complexity scales with area. Nature Ecology and Evolution, 2022, 6, 307-314.	7.8	35
236	The Geography of Ecological Niche Evolution in Mammals. Current Biology, 2017, 27, 1369-1374.	3.9	34
237	Do interactions between plant and soil biota change with elevation? A study on <i>Fagus sylvatica</i> Biology Letters, 2011, 7, 699-701.	2.3	33
238	Impacts of past habitat loss and future climate change on the range dynamics of South African Proteaceae. Diversity and Distributions, 2013, 19, 363-376.	4.1	33
239	Favourability functions versus probability of presence: advantages and misuses. Ecography, 2008, 31, 417-422.	4.5	32
240	Risk assessment for Iberian birds under global change. Biological Conservation, 2013, 168, 192-200.	4.1	32
241	The need for largeâ€scale distribution data to estimate regional changes in species richness under future climate change. Diversity and Distributions, 2017, 23, 1393-1407.	4.1	32
242	Functional traits modulate the response of alien plants along abiotic and biotic gradients. Global Ecology and Biogeography, 2018, 27, 1173-1185.	5.8	32
243	Environment and evolutionary history shape phylogenetic turnover in European tetrapods. Nature Communications, 2019, 10, 249.	12.8	32
244	Working toward integrated models of alpine plant distribution. Alpine Botany, 2013, 123, 41-53.	2.4	31
245	Extreme climate events counteract the effects of climate and landâ€use changes in <scp>A</scp> lpine tree lines. Journal of Applied Ecology, 2017, 54, 39-50.	4.0	31
246	Plant Species Migration as a Key Uncertainty in Predicting Future Impacts of Climate Change on Ecosystems: Progress and Challenges., 2007,, 129-137.		30
247	Introduction. Global change and biodiversity: future challenges. Biology Letters, 2008, 4, 553-555.	2.3	29
248	Landscape structure and genetic architecture jointly impact rates of niche evolution. Ecography, 2014, 37, 1218-1229.	4.5	28
249	Disentangling drivers of plant endemism and diversification in the European Alps – A phylogenetic and spatially explicit approach. Perspectives in Plant Ecology, Evolution and Systematics, 2017, 28, 19-27.	2.7	28
250	Spatial analyses of multiâ€trophic terrestrial vertebrate assemblages in Europe. Global Ecology and Biogeography, 2019, 28, 1636-1648.	5.8	27
251	Biodiversity Funds and Conservation Needs in the EU Under Climate Change. Conservation Letters, 2014, 7, 390-400.	5.7	26
252	Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy. Biology Letters, 2014, 10, 20140347.	2.3	26

#	Article	IF	Citations
253	Multiâ€trophic βâ€diversity mediates the effect of environmental gradients on the turnover of multiple ecosystem functions. Functional Ecology, 2019, 33, 2053-2064.	3.6	26
254	TETRAâ€EU 1.0: A speciesâ€level trophic metaweb of European tetrapods. Global Ecology and Biogeography, 2020, 29, 1452-1457.	5.8	26
255	Plant community impact on productivity: Trait diversity or key(stone) species effects?. Ecology Letters, 2022, 25, 913-925.	6.4	26
256	Modelling the winter distribution of a rare and endangered migrant, the Aquatic Warbler Acrocephalus paludicola. Ibis, 2007, 149, 701-714.	1.9	25
257	Morphological variation in salamanders and their potential response to climate change. Global Change Biology, 2016, 22, 2013-2024.	9.5	25
258	It takes one to know one: Similarity to resident alien species increases establishment success of new invaders. Diversity and Distributions, 2018, 24, 680-691.	4.1	25
259	Testing the Effectiveness of Environmental Variables to Explain European Terrestrial Vertebrate Species Richness across Biogeographical Scales. PLoS ONE, 2015, 10, e0131924.	2.5	25
260	The diversity of biotic interactions complements functional and phylogenetic facets of biodiversity. Current Biology, 2022, 32, 2093-2100.e3.	3.9	25
261	Environmental change hastens the demise of the critically endangered riverine rabbit (Bunolagus) Tj ETQq $1\ 1\ 0.0$	784314 rg 4.1	BT /Qverlock
262	Fineâ€scale regional distribution modelling of rare and threatened species: bridging <scp>GIS</scp> Tools and conservation in practice. Diversity and Distributions, 2013, 19, 651-663.	4.1	24
263	Do ecological differences between taxonomic groups influence the relationship between species' distributions and climate? A global metaâ€analysis using species distribution models. Ecography, 2013, 36, 657-664.	4.5	24
264	Accounting for tree line shift, glacier retreat and primary succession in mountain plant distribution models. Diversity and Distributions, 2014, 20, 1379-1391.	4.1	24
265	Mammalian phylogenetic diversity–area relationships at a continental scale. Ecology, 2015, 96, 2814-2822.	3.2	24
266	Demographic performance of European tree species at their hot and cold climatic edges. Journal of Ecology, 2021, 109, 1041-1054.	4.0	23
267	Evolutionary assembly of flowering plants into sky islands. Nature Ecology and Evolution, 2021, 5, 640-646.	7.8	23
268	Altitudinal Zonation of Green Algae Biodiversity in the French Alps. Frontiers in Plant Science, 2021, 12, 679428.	3.6	22
269	A novel downscaling approach to predict plant invasions and improve local conservation actions. Biological Invasions, 2014, 16, 2577-2590.	2.4	21
270	Improving spatial predictions of taxonomic, functional and phylogenetic diversity. Journal of Ecology, 2018, 106, 76-86.	4.0	21

#	Article	IF	Citations
271	Environmental and biotic drivers of soil microbial $\hat{l}^2\hat{a}$ diversity across spatial and phylogenetic scales. Ecography, 2019, 42, 2144-2156.	4.5	21
272	Effects of soil preservation for biodiversity monitoring using environmental DNA. Molecular Ecology, 2021, 30, 3313-3325.	3.9	21
273	Novel methods to correct for observer and sampling bias in presenceâ€only species distribution models. Global Ecology and Biogeography, 2021, 30, 2312-2325.	5.8	21
274	Will climate change increase hybridization risk between potential plant invaders and their congeners in Europe?. Diversity and Distributions, 2017, 23, 934-943.	4.1	19
275	Integrating correlation between traits improves spatial predictions of plant functional composition. Oikos, 2018, 127, 472-481.	2.7	19
276	Combining pointâ€process and landscape vegetation models to predict large herbivore distributions in space and timeâ€"A case study of <i>Rupicapra rupicapra</i> . Diversity and Distributions, 2018, 24, 352-362.	4.1	19
277	Open access solutions for biodiversity journals: Do not replace one problem with another. Diversity and Distributions, 2019, 25, 5-8.	4.1	19
278	Forest structure, not climate, is the primary driver of functional diversity in northeastern North America. Science of the Total Environment, 2021, 762, 143070.	8.0	19
279	Environmental and anthropogenic constraints on animal space use drive extinction risk worldwide. Ecology Letters, 2021, 24, 2576-2585.	6.4	19
280	Is There Any Evidence for Rapid, Genetically-Based, Climatic Niche Expansion in the Invasive Common Ragweed?. PLoS ONE, 2016, 11, e0152867.	2.5	19
281	Improving phylogenetic regression under complex evolutionary models. Ecology, 2016, 97, 286-293.	3.2	18
282	The role of climate and biotic factors in shaping current distributions and potential future shifts of European Neocrepidodera (Coleoptera, Chrysomelidae). Insect Conservation and Diversity, 2020, 13, 47-62.	3.0	18
283	One Tree to Link Them All: A Phylogenetic Dataset for the European Tetrapoda. PLOS Currents, 2014, 6, .	1.4	18
284	Effects of Harvesting Flowers from Shrubs on the Persistence and Abundance of Wild Shrub Populations at Multiple Spatial Extents. Conservation Biology, 2011, 25, 73-84.	4.7	17
285	Farmland bird assemblages exhibit higher functional and phylogenetic diversity than forest assemblages in France. Journal of Biogeography, 2020, 47, 2392-2404.	3.0	17
286	A new European land systems representation accounting for landscape characteristics. Landscape Ecology, 2021, 36, 2215-2234.	4.2	17
287	Addressing the Eltonian shortfall with traitâ€based interaction models. Ecology Letters, 2022, 25, 889-899.	6.4	17
288	TaxoNERD: Deep neural models for the recognition of taxonomic entities in the ecological and evolutionary literature. Methods in Ecology and Evolution, 2022, 13, 625-641.	5.2	16

#	Article	IF	Citations
289	Traitâ€based projections of climate change effects on global biome distributions. Diversity and Distributions, 2022, 28, 25-37.	4.1	16
290	Tempo and drivers of plant diversification in the European mountain system. Nature Communications, 2022, 13, 2750.	12.8	15
291	Potential effects of predicted climate change on the endemic South African Dwarf Chameleons, <i>Bradypodion < /i>. African Journal of Herpetology, 2009, 58, 28-35.</i>	0.9	14
292	Integrating spatial and phylogenetic information in the fourthâ€corner analysis to test trait–environment relationships. Ecology, 2018, 99, 2667-2674.	3.2	14
293	Climate, soil resources and microbial activity shape the distributions of mountain plants based on their functional traits. Ecography, 2020, 43, 1550-1559.	4.5	14
294	Environmental drivers for Coquillettidia mosquito habitat selection: a method to highlight key field factors. Hydrobiologia, 2010, 652, 377-388.	2.0	13
295	Drought effects on the stability of forest-grassland ecotones under gradual climate change. PLoS ONE, 2018, 13, e0206138.	2.5	13
296	Determinants of zoogeographical boundaries differ between vertebrate groups. Global Ecology and Biogeography, 2021, 30, 1796-1809.	5.8	13
297	Balance between climate change mitigation benefits and land use impacts of bioenergy: conservation implications for European birds. GCB Bioenergy, 2015, 7, 741-751.	5.6	12
298	Productivity begets less phylogenetic diversity but higher uniqueness than expected. Journal of Biogeography, 2020, 47, 44-58.	3.0	12
299	Cascading effects of moth outbreaks on subarctic soil food webs. Scientific Reports, 2021, 11, 15054.	3.3	12
300	Spatial and temporal variation in speciesâ€area relationships in the Fynbos biological hotspot. Ecography, 2007, 30, 852-861.	4.5	11
301	Life-History Traits Evolved Jointly with Climatic Niche and Disturbance Regime in the Genus <i>Leucadendron (i) (Proteaceae). American Naturalist, 2018, 191, 220-234.</i>	2.1	11
302	Maximizing regional biodiversity requires a mosaic of protection levels. PLoS Biology, 2021, 19, e3001195.	5.6	11
303	The spatial scaling of food web structure across European biogeographical regions. Ecography, 2021, 44, 653-664.	4.5	10
304	Clustering Species With Residual Covariance Matrix in Joint Species Distribution Models. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	10
305	MACIS: Minimisation of and Adaptation to Climate Change Impacts on Biodiversity. Gaia, 2008, 17, 393-395.	0.7	10
306	Decomposing changes in phylogenetic and functional diversity over space and time. Methods in Ecology and Evolution, 2015, 6, 109-118.	5.2	8

#	Article	IF	Citations
307	Climate and socioâ€economic factors explain differences between observed and expected naturalization patterns of European plants around the world. Global Ecology and Biogeography, 2021, 30, 1514-1531.	5.8	8
308	Reprint of: Disentangling drivers of plant endemism and diversification in the European Alps - a phylogenetic and spatially explicit approach. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 30, 31-40.	2.7	7
309	Multifaceted biodiversity modelling at macroecological scales using Gaussian processes. Diversity and Distributions, 2018, 24, 1492-1502.	4.1	7
310	Potential alien ranges of European plants will shrink in the future, but less so for already naturalized than for not yet naturalized species. Diversity and Distributions, 2021, 27, 2063-2076.	4.1	7
311	Strong links between plant traits and microbial activities but different abiotic drivers in mountain grasslands. Journal of Biogeography, 2021, 48, 2755-2770.	3.0	7
312	Energy and physiological tolerance explain multiâ€ŧrophic soil diversity in temperate mountains. Diversity and Distributions, 2022, 28, 2549-2564.	4.1	7
313	Functionally distinct tree species support long-term productivity in extreme environments. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20211694.	2.6	6
314	An appraisal of graph embeddings for comparing trophic network architectures. Methods in Ecology and Evolution, 2022, 13, 203-216.	5.2	5
315	ENM2020: A Free Online Course and Set of Resources on Modeling Species' Niches and Distributions. Biodiversity Informatics, 0, 17, .	3.0	5
316	Why Would Plant Species Become Extinct Locally If Growing Conditions Improve?. International Journal of Biological Sciences, 2012, 8, 1121-1129.	6.4	4
317	A Common Toolbox to Understand, Monitor or Manage Rarity? A Response to Carmona et al Trends in Ecology and Evolution, 2017, 32, 891-893.	8.7	4
318	Lags in phenological acclimation of mountain grasslands after recent warming. Journal of Ecology, 2021, 109, 3396-3410.	4.0	4
319	Combining expertâ€based and computational approaches to design protected river networks under climate change. Diversity and Distributions, 2021, 27, 2428-2440.	4.1	4
320	Differential effects of soil trophic networks on microbial decomposition activity in mountain ecosystems. Soil Biology and Biochemistry, 2022, 172, 108771.	8.8	4
321	Using a mathematical model to simulate the influence of tubificid worms (Oligochaeta) on oxygen concentrations in hyporheic sediments. Fundamental and Applied Limnology, 2008, 172, 135-145.	0.7	3
322	Identifying national responsibility species based on spatial conservation prioritization. Biological Conservation, 2019, 236, 411-419.	4.1	3
323	Functional and Phylogenetic Diversity–Area Relationships. , 2021, , 107-132.		3
324	Editorial: Predicting and Managing Climate-Driven Range Shifts in Plants. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	3

#	ARTICLE	IF	CITATIONS
325	Effects of climate change and horticultural use on the spread of naturalized alien garden plants in Europe. Ecography, 2019, 42, 1548-1557.	4.5	2
326	Biogeography of intraspecific trait variability in matgrass (Nardus stricta): High phenotypic variation at the local scale exceeds large scale variability patterns. Perspectives in Plant Ecology, Evolution and Systematics, 2020, 46, 125555.	2.7	2
327	Indicators of climate: Ecrins National Park participates in long-term monitoring to help determine the effects of climate change. Eco Mont, 2015, 8, 44-52.	0.1	2
328	Applying convolutional neural networks to speed up environmental DNA annotation in a highly diverse ecosystem. Scientific Reports, 2022, 12 , .	3.3	2
329	Can functional genomic diversity provide novel insights into mechanisms of community assembly? A pilot study from an invaded alpine streambed. Ecology and Evolution, 2021, 11, 12075-12091.	1.9	O