List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4975532/publications.pdf Version: 2024-02-01

ΙΠΝΠ ΣΠΟΙΧΑΜΑ

#	Article	IF	CITATIONS
1	Crystal Structure and Hydrogen Bonding System in Cellulose Iαfrom Synchrotron X-ray and Neutron Fiber Diffraction. Journal of the American Chemical Society, 2003, 125, 14300-14306.	6.6	1,274
2	Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers. Advanced Materials, 2005, 17, 153-155.	11.1	908
3	Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules, 1991, 24, 4168-4175.	2.2	738
4	Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules, 1991, 24, 2461-2466.	2.2	500
5	Computer simulation studies of microcrystalline cellulose lβ. Carbohydrate Research, 2006, 341, 138-152.	1.1	357
6	The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 484-489.	3.3	323
7	Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 9091-9095.	3.3	273
8	Polymorphism of Cellulose I Family:Â Reinvestigation of Cellulose IVI. Biomacromolecules, 2004, 5, 1385-1391.	2.6	261
9	Orientation of cellulose microcrystals by strong magnetic fields. Macromolecules, 1992, 25, 4232-4234.	2.2	245
10	Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose, 2003, 10, 103-110.	2.4	182
11	Structural Details of Crystalline Cellulose from Higher Plants. Biomacromolecules, 2004, 5, 1333-1339.	2.6	179
12	Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose, 1997, 4, 221-232.	2.4	178
13	Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer, 1997, 38, 463-468.	1.8	177
14	TEMPO-mediated oxidation of native cellulose: Microscopic analysis of fibrous fractions in the oxidized products. Carbohydrate Polymers, 2006, 65, 435-440.	5.1	175
15	New Insight into Cellulose Structure by Atomic Force Microscopy Shows the lα Crystal Phase at Near-Atomic Resolution. Biophysical Journal, 2000, 79, 1139-1145.	0.2	172
16	Expression and Characterization of the Chitin-Binding Domain of Chitinase A1 from Bacillus circulans WL-12. Journal of Bacteriology, 2000, 182, 3045-3054.	1.0	157
17	Native celluloses on the basis of two crystalline phase (lα/lβ) system. Journal of Applied Polymer Science, 1993, 49, 1491-1496	1.3	154
18	Roles of the Exposed Aromatic Residues in Crystalline Chitin Hydrolysis by Chitinase A from Serratia marcescens2170. Journal of Biological Chemistry, 2001, 276, 41343-41349.	1.6	154

#	Article	IF	CITATIONS
19	Allomorphs of native crystalline cellulose I evaluated by two equatoriald-spacings. Journal of Wood Science, 2001, 47, 124-128.	0.9	151
20	Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules, 1990, 23, 3196-3198.	2.2	146
21	The lα →lβ transformation of highly crystalline cellulose by annealing in various mediums. Macromolecules, 1991, 24, 6816-6822.	2.2	145
22	Lattice images from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa K�tz Planta, 1985, 166, 161-168.	1.6	143
23	Nanodomains of lαand lβCellulose in Algal Microfibrils. Macromolecules, 1998, 31, 6275-6279.	2.2	136
24	Structural modification of bacterial cellulose. Cellulose, 2000, 7, 213-225.	2.4	122
25	High-Resolution Atomic Force Microscopy of NativeValoniaCellulose I Microcrystals. Journal of Structural Biology, 1997, 119, 129-138.	1.3	121
26	Characterization of starch based nanocomposites. Journal of Materials Science, 2007, 42, 8163-8171.	1.7	119
27	The chitin system in the tubes of deep sea hydrothermal vent worms. Journal of Structural Biology, 1992, 109, 116-128.	1.3	118
28	Aromatic residues within the substrate-binding cleft of Bacillus circulans chitinase A1 are essential for hydrolysis of crystalline chitin. Biochemical Journal, 2003, 376, 237-244.	1.7	107
29	Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold. Cellulose, 2010, 17, 349-363.	2.4	104
30	Crystalline cellulose lα and lβ studied by molecular dynamics simulation. Carbohydrate Research, 1995, 273, 207-223.	1.1	103
31	Molecular Imaging ofHalocynthia papillosaCellulose. Journal of Structural Biology, 1998, 124, 42-50.	1.3	102
32	Prediction of Lignin Contents from Infrared Spectroscopy: Chemical Digestion and Lignin/Biomass Ratios of Cryptomeria japonica. Applied Biochemistry and Biotechnology, 2019, 188, 1066-1076.	1.4	100
33	Unidirectional processive action of cellobiohydrolase Cel7A on Valonia cellulose microcrystals. FEBS Letters, 1998, 432, 113-116.	1.3	98
34	Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose, 2002, 9, 65-74.	2.4	95
35	Cellulosic nanocomposites. I. Thermally deformable cellulose hexanoates from heterogeneous reaction. Journal of Applied Polymer Science, 2000, 78, 2242-2253.	1.3	94
36	Enhancement of growth by expression of poplar cellulase in Arabidopsis thaliana. Plant Journal, 2003, 33, 1099-1106.	2.8	92

#	Article	IF	CITATIONS
37	Versatile derivatives of carbohydrate-binding modules for imaging of complex carbohydrates approaching the molecular level of resolution. BioTechniques, 2006, 41, 435-443.	0.8	89
38	Negative Diamagnetic Anisotropy and Birefringence of Cellulose Nanocrystals. Macromolecules, 2015, 48, 8844-8857.	2.2	89
39	A combined FT-IR microscopy and principal component analysis on softwood cell walls. Carbohydrate Polymers, 2003, 52, 449-453.	5.1	87
40	Formation and Structure of Artificial Cellulose Spherulites via Enzymatic Polymerization. Biomacromolecules, 2000, 1, 168-173.	2.6	80
41	Improved Structural Data of Cellulose IIIIPrepared in Supercritical Ammonia. Macromolecules, 2001, 34, 1237-1243.	2.2	80
42	Molecular directionality in crystalline β-chitin: hydrolysis by chitinases A and B from Serratia marcescens 2170. Biochemical Journal, 2005, 388, 851-856.	1.7	80
43	Visualization of cellulase interactions with cellulose microfibril by transmission electron microscopy. Cellulose, 2017, 24, 1-9.	2.4	80
44	Aging of wood: Analysis of color changes during natural aging and heat treatment. Holzforschung, 2011, 65, .	0.9	79
45	Selective degradation of the cellulose lÎ \pm component in Cladophora cellulose with Trichoderma viride cellulase. Carbohydrate Research, 1997, 305, 109-116.	1.1	76
46	Molecular Directionality in Cellulose Polymorphs. Biomacromolecules, 2006, 7, 274-280.	2.6	76
47	Characterization of native crystalline cellulose in the cell walls of Oomycota. Journal of Biotechnology, 1997, 57, 29-37.	1.9	74
48	Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction. Holzforschung, 2006, 60, 474-479.	0.9	74
49	Mechanical Behavior of Cellulose Microfibrils in Tension Wood, in Relation with Maturation Stress Generation. Biophysical Journal, 2006, 91, 1128-1135.	0.2	74
50	Maturation Stress Generation in Poplar Tension Wood Studied by Synchrotron Radiation Microdiffraction Â. Plant Physiology, 2011, 155, 562-570.	2.3	72
51	Formation of Highly Twisted Ribbons in a Carboxymethylcellulase Gene-Disrupted Strain of a Cellulose-Producing Bacterium. Journal of Bacteriology, 2013, 195, 958-964.	1.0	70
52	Nanotube and Threeâ€Way Nanotube Formation with Nonionic Amphiphilic Block Peptides. Macromolecular Bioscience, 2008, 8, 1026-1033.	2.1	69
53	Artificial Chitin Spherulites Composed of Single Crystalline Ribbons of α-Chitin via Enzymatic Polymerization. Macromolecules, 2000, 33, 4155-4160.	2.2	68
54	Systematic survey on crystalline features of algal celluloses. Cellulose, 1997, 4, 147-160.	2.4	66

#	Article	IF	CITATIONS
55	Title is missing!. Cellulose, 2002, 9, 351-360.	2.4	66
56	Proton-Dependent Coniferin Transport, a Common Major Transport Event in Differentiating Xylem Tissue of Woody Plants Â. Plant Physiology, 2013, 162, 918-926.	2.3	66
57	Transformation of peptide nanotubes into a vesicle via fusion driven by stereo-complex formation. Chemical Communications, 2011, 47, 3204.	2.2	65
58	Molecular directionality of β-chitin biosynthesis. Journal of Molecular Biology, 1999, 286, 247-255.	2.0	64
59	Honeycomb-like architecture produced by living bacteria, Gluconacetobacter xylinus. Carbohydrate Polymers, 2007, 69, 1-6.	5.1	64
60	Vesicular Self-Assembly of a Helical Peptide in Water. Langmuir, 1999, 15, 4461-4463.	1.6	63
61	Surface functional group dependent apatite formation on bacterial cellulose microfibrils network in a simulated body fluid. Journal of Biomedical Materials Research - Part A, 2007, 81A, 124-134.	2.1	63
62	The GLABRA2 homeodomain protein directly regulates <i>CESA5</i> and <i>XTH17</i> gene expression in Arabidopsis roots. Plant Journal, 2009, 60, 564-574.	2.8	62
63	Docking of congo red to the surface of crystalline cellulose using molecular mechanics. Biopolymers, 1995, 36, 201-210.	1.2	61
64	Dual Response of Photonic Films with Chiral Nematic Cellulose Nanocrystals: Humidity and Formaldehyde. ACS Applied Materials & Interfaces, 2020, 12, 17833-17844.	4.0	61
65	The enzymatic susceptibility of cellulose microfibrils of the algal-bacterial type and the cotton-ramie type. Carbohydrate Research, 1997, 305, 261-269.	1.1	60
66	The directionality of chitin biosynthesis: a revisit. Biochemical Journal, 2003, 374, 755-760.	1.7	58
67	Mechanical characteristics of aged Hinoki wood from Japanese historical buildings. Comptes Rendus Physique, 2009, 10, 601-611.	0.3	58
68	Visualization of the adsorption of a bacterial endo-β-1,4-glucanase and its isolated cellulose-binding domain to crystalline cellulose. International Journal of Biological Macromolecules, 1993, 15, 347-351.	3.6	57
69	On the detachment of the gelatinous layer in tension wood fiber. Journal of Wood Science, 2005, 51, 218-221.	0.9	55
70	Enzymatic hydrolysis of bacterial cellulose. Carbohydrate Research, 1997, 305, 281-288.	1.1	54
71	Geometric phase analysis of lattice images from algal cellulose microfibrils. Polymer, 2003, 44, 1871-1879.	1.8	53
72	Structural Study of α Chitin from the Grasping Spines of the Arrow Worm (Sagitta spp.). Journal of Structural Biology, 1995, 114, 218-228.	1.3	52

#	Article	IF	CITATIONS
73	Characterization of tension and normally lignified wood cellulose inPopulus maximowiczii. Cellulose, 1995, 2, 223-233.	2.4	51
74	Almost Pure Iα Cellulose in the Cell Wall of Glaucocystis. Journal of Structural Biology, 1999, 127, 248-257.	1.3	51
75	Precautions for the Structural Analysis of the Gelatinous Layer in Tension Wood. IAWA Journal, 2005, 26, 189-195.	2.7	49
76	Localization of Crystalline Allomorphs in Cellulose Microfibril. Biomacromolecules, 2009, 10, 2235-2239.	2.6	49
77	Morphology Control between Twisted Ribbon, Helical Ribbon, and Nanotube Self-Assemblies with His-Containing Helical Peptides in Response to pH Change. Langmuir, 2014, 30, 1022-1028.	1.6	47
78	Trp122 and Trp134 on the surface of the catalytic domain are essential for crystalline chitin hydrolysis byBacillus circulanschitinase A1. FEBS Letters, 2001, 494, 74-78.	1.3	46
79	Importance of Exposed Aromatic Residues in Chitinase B from Serratia marcescens 2170 for Crystalline Chitin Hydrolysis. Journal of Biochemistry, 2004, 136, 163-168.	0.9	46
80	Accessibility and size of Valonia cellulose microfibril studied by combined deuteration/rehydrogenation and FTIR technique. Cellulose, 2008, 15, 419-424.	2.4	46
81	Rational design of peptide nanotubes for varying diameters and lengths. Journal of Peptide Science, 2011, 17, 94-99.	0.8	46
82	On the polarity of cellulose in the cell wall of Valonia. Planta, 1994, 193, 260.	1.6	44
83	Parallel assembly of dipolar columns composed of a stacked cyclic tri-β-peptide. Organic and Biomolecular Chemistry, 2006, 4, 1896-1901.	1.5	43
84	Direct imaging of polysaccharide aggregates in frozen aqueous dilute systems. Carbohydrate Polymers, 1994, 23, 261-264.	5.1	42
85	High-resolution electron microscopy on cellulose II and α-chitin single crystals. , 1998, 5, 113-122.		42
86	Wood identification of a wooden mask using synchrotron X-ray microtomography. Journal of Archaeological Science, 2010, 37, 2842-2845.	1.2	42
87	Exhaustive crystal structure search and crystal modeling of β-chitin. International Journal of Biological Macromolecules, 2007, 40, 336-344.	3.6	40
88	Tubulation on peptide vesicles by phase-separation of a binary mixture of amphiphilic right-handed and left-handed helical peptides. Soft Matter, 2011, 7, 4143.	1.2	40
89	Contractive Force and Transformation of Microfibril with Aqueous Sodium Hydroxide Solution for Wood. Holzforschung, 2000, 54, 315-320.	0.9	39
90	Tensile strength of windmill palm (Trachycarpus fortunei) fiber bundles and its structural implications. Journal of Materials Science, 2012, 47, 949-959.	1.7	37

#	Article	IF	CITATIONS
91	Computer vision-based wood identification and its expansion and contribution potentials in wood science: A review. Plant Methods, 2021, 17, 47.	1.9	37
92	Identification of Pinus species related to historic architecture in Korea using NIR chemometric approaches. Journal of Wood Science, 2016, 62, 156-167.	0.9	36
93	Columnar Assembly of Cyclic β-Amino Acid Functionalized with Pyranose Rings. Biomacromolecules, 2006, 7, 2394-2400.	2.6	34
94	Cellulose l Nanolayers Designed by Selfâ€Assembly of its Thiosemicarbazone on a Gold Substrate. Advanced Materials, 2007, 19, 3368-3370.	11.1	34
95	X-ray Microbeam and Electron Diffraction Experiments on Developing Xylem Cell Walls. Biomacromolecules, 2002, 3, 182-186.	2.6	33
96	Maturation Stress Generation in Poplar Tension Wood Studied by Synchrotron Radiation Microdiffraction. Plant Physiology, 2010, 152, 1650-1658.	2.3	32
97	Near-infrared spectroscopy as a potential method for identification of anatomically similar Japanese diploxylons. Journal of Wood Science, 2015, 61, 251-261.	0.9	31
98	Crystalline morphology of Valonia macrophysa cellulose IIII revealed by direct lattice imaging. International Journal of Biological Macromolecules, 1987, 9, 122-130.	3.6	30
99	Title is missing!. Journal of Materials Science, 2002, 37, 4279-4284.	1.7	30
100	Preferential Uniplanar Orientation of Cellulose Microfibrils Reinvestigated by the FTIR Technique. Cellulose, 2006, 13, 309-316.	2.4	30
101	Directional degradation of β-chitin by chitinase A1 revealed by a novel reducing end labelling technique. FEBS Letters, 2002, 510, 201-205.	1.3	29
102	Labeling the planar face of crystalline cellulose using quantum dots directed by type-I carbohydrate-binding modules. Cellulose, 2009, 16, 19-26.	2.4	29
103	The structural changes in crystalline cellulose and effects on enzymatic digestibility. Polymer Degradation and Stability, 2013, 98, 2351-2356.	2.7	29
104	Versatile peptide rafts for conjugate morphologies by self-assembling amphiphilic helical peptides. Polymer Journal, 2013, 45, 509-515.	1.3	29
105	Studies of the structural change during deformation in Cryptomeria japonica by time-resolved synchrotron small-angle X-ray scattering. Journal of Structural Biology, 2005, 151, 1-11.	1.3	28
106	Compression stress in opposite wood of angiosperms: observations in chestnut, mani and poplar. Annals of Forest Science, 2006, 63, 507-510.	0.8	28
107	Functional Reconstitution of Cellulose Synthase in <i>Escherichia coli</i> . Biomacromolecules, 2014, 15, 4206-4213.	2.6	28
108	Automated recognition of wood used in traditional Japanese sculptures by texture analysis of their low-resolution computed tomography data. Journal of Wood Science, 2015, 61, 630-640.	0.9	28

#	Article	IF	CITATIONS
109	Aggregation of ribbons in bacterial cellulose induced by high pressure incubation. Carbohydrate Polymers, 2003, 53, 9-14.	5.1	27
110	Viability and cellulose synthesizing ability of Gluconacetobacter xylinus cells under high-hydrostatic pressure. Extremophiles, 2007, 11, 693-698.	0.9	27
111	Non-destructive method for wood identification using conventional X-ray computed tomography data. Journal of Cultural Heritage, 2019, 38, 88-93.	1.5	27
112	Enzymatic hydrolysis of biomimetic bacterial cellulose–hemicellulose composites. Carbohydrate Polymers, 2018, 190, 95-102.	5.1	25
113	Automated identification of Lauraceae by scale-invariant feature transform. Journal of Wood Science, 2018, 64, 69-77.	0.9	25
114	A spectroscopic assessment of cellulose and the molecular mechanisms of cellulose biosynthesis in the ascidian Ciona intestinalis. Marine Genomics, 2008, 1, 9-14.	0.4	24
115	Enzymatic Polymerization Behavior Using Cellulose-Binding Domain Deficient Endoglucanase II. Macromolecular Bioscience, 2005, 5, 623-628.	2.1	23
116	Double Assembly Composed of Lectin Association with Columnar Molecular Assembly of Cyclic Tri-β-peptide Having Sugar Units. Biomacromolecules, 2007, 8, 611-616.	2.6	23
117	Effect of thermochemical pretreatment on lignin alteration and cell wall microstructural degradation in Eucalyptus globulus: comparison of acid, alkali, and water pretreatments. Journal of Wood Science, 2016, 62, 276-284.	0.9	23
118	Molecular assembly formation of cyclic hexa-β-peptide composed of acetylated glycosamino acids. Biopolymers, 2007, 88, 150-156.	1.2	21
119	Temperature-Triggered Fusion of Vesicles Composed of Right-Handed and Left-Handed Amphiphilic Helical Peptides. Langmuir, 2011, 27, 4300-4304.	1.6	21
120	Near-Infrared Chemometric Approach to Exhaustive Analysis of Rice Straw Pretreated for Bioethanol Conversion. Applied Biochemistry and Biotechnology, 2011, 164, 194-203.	1.4	21
121	Multimethod approach to understand the assembly of cellulose fibrils in the biosynthesis of bacterial cellulose. Cellulose, 2018, 25, 2771-2783.	2.4	21
122	Influence of drying of chara cellulose on length/length distribution of microfibrils after acid hydrolysis. International Journal of Biological Macromolecules, 2018, 109, 569-575.	3.6	21
123	Spontaneous Vesicle Formation by Helical Glycopeptides in Water. Journal of Colloid and Interface Science, 2000, 222, 265-267.	5.0	20
124	Newly developed nanocomposites from cellulose acetate/layered silicate/poly(ε-caprolactone): Synthesis and morphological characterization. Journal of Wood Science, 2006, 52, 121-127.	0.9	20
125	Anatomical features of Fagaceae wood statistically extracted by computer vision approaches: Some relationships with evolution. PLoS ONE, 2019, 14, e0220762.	1.1	20
126	High-resolution electron microscopy on ultrathin sections of cellulose microfibrils generated by glomerulocytes in Polyzoa vesiculiphora. Protoplasma, 1998, 203, 84-90.	1.0	19

#	Article	IF	CITATIONS
127	The thermal expansion of mannan I obtained from ivory nuts. Carbohydrate Polymers, 2007, 70, 298-303.	5.1	19
128	The crystalline phase of cellulose changes under developmental control in a marine chordate. Cellular and Molecular Life Sciences, 2011, 68, 1623-1631.	2.4	19
129	Characterization of crystalline linear (1 → 3)-α-d-glucan synthesized in vitro. Carbohydrate Polymers, 2017, 177, 341-346.	5.1	19
130	Varietal difference in cellulose microfibril dimensions observed by infrared spectroscopy. Cellulose, 2009, 16, 1-8.	2.4	18
131	Cell wall characterization of windmill palm (Trachycarpus Fortunei) fibers and its functional implications. IAWA Journal, 2013, 34, 20-33.	0.5	18
132	Changes in micropores in dry wood with elapsed time in the environment. Journal of Wood Science, 2008, 54, 515-519.	0.9	17
133	Electronic properties of tetrathiafulvaleneâ€modified cyclicâ€Î²â€peptide nanotube. Biopolymers, 2016, 106, 275-282.	1.2	17
134	Texture analysis of stereograms of diffuse-porous hardwood: identification of wood species used in Tripitaka Koreana. Journal of Wood Science, 2017, 63, 322-330.	0.9	17
135	Cellulose l \hat{I}^2 investigated by IR-spectroscopy at low temperatures. Cellulose, 2014, 21, 3171-3179.	2.4	16
136	Facile and Precise Formation of Unsymmetric Vesicles Using the Helix Dipole, Stereocomplex, and Steric Effects of Peptides. Langmuir, 2014, 30, 4273-4279.	1.6	16
137	Self-Assemblies of Triskelion A ₂ B-Type Amphiphilic Polypeptide Showing pH-Responsive Morphology Transformation. Langmuir, 2012, 28, 6006-6012.	1.6	15
138	Chemometric Analysis with Near-Infrared Spectroscopy for Chemically Pretreated Erianthus toward Efficient Bioethanol Production. Applied Biochemistry and Biotechnology, 2012, 166, 711-721.	1.4	15
139	ANATOMICAL AND MECHANICAL CHARACTERISTICS OF LEAF-SHEATH FIBROVASCULAR BUNDLES IN PALMS. IAWA Journal, 2013, 34, 285-300.	2.7	15
140	Evaluation of cell wall reinforcement in feather keratin-treated waterlogged wood as imaged by synchrotron X-ray microtomography (μXRT) and TEM. Holzforschung, 2013, 67, 795-803.	0.9	15
141	Quantitative evaluation of properties of residual DNA in Cryptomeria japonica wood. Journal of Wood Science, 2015, 61, 1-9.	0.9	15
142	Formation of gold nanoparticles in microreactor composed of helical peptide assembly in water. Journal of Colloid and Interface Science, 2004, 280, 506-510.	5.0	14
143	Extraction of cellulose-synthesizing activity of Gluconacetobacter xylinus by alkylmaltoside. Carbohydrate Research, 2011, 346, 2760-2768.	1.1	14
144	Fibrillar assembly of bacterial cellulose in the presence of wood-based hemicelluloses. International Journal of Biological Macromolecules, 2017, 102, 111-118.	3.6	14

#	Article	IF	CITATIONS
145	Outstanding Toughness of Cherry Bark Achieved by Helical Spring Structure of Rigid Cellulose Fiber Combined with Flexible Layers of Lipid Polymers. Advanced Materials, 2018, 30, 1705315.	11.1	14
146	Enzymatic activities of novel mutant endoglucanases carrying sequential active sites. International Journal of Biological Macromolecules, 2008, 43, 226-231.	3.6	13
147	Variation of microfibril angles and chemical composition: Implication for functional properties. Journal of Materials Science Letters, 2003, 22, 963-966.	0.5	11
148	Enzymatic Polymerization Catalyzed by Immobilized Endoglucanase on Gold. Biomacromolecules, 2011, 12, 785-790.	2.6	11
149	Degradation and Synthesis of β-Glucans by a Magnaporthe oryzae Endotransglucosylase, a Member of the Glycoside Hydrolase 7 Family. Journal of Biological Chemistry, 2013, 288, 13821-13830.	1.6	11
150	CesA protein is included in the terminal complex of Acetobacter. Cellulose, 2017, 24, 2017-2027.	2.4	11
151	Wood properties and chemical composition of the eccentric growth branch of Viburnum odoratissimum var. awabuki. Trees - Structure and Function, 2010, 24, 541-549.	0.9	10
152	Effects of reaction conditions on cellulose structures synthesized in vitro by bacterial cellulose synthases. Carbohydrate Polymers, 2016, 136, 656-666.	5.1	10
153	Alpha-cellulose extraction procedure for the tropical tree sungkai (Peronema canescens Jack) by using an improved vessel for reliable paleoclimate reconstruction. Geochemical Journal, 2014, 48, 299-307.	0.5	10
154	Wood Identification of Historical Architecture in Korea by Synchrotron X-ray Microtomography-Based Three-Dimensional Microstructural Imaging. Journal of the Korean Wood Science and Technology, 2020, 48, 283-290.	0.8	10
155	Variation in xylem formation of Viburnum odoratissimum var. awabuki: growth strain and related anatomical features of branches exhibiting unusual eccentric growth. Tree Physiology, 2009, 29, 707-713.	1.4	9
156	Fibre Length in Relation to the Distance from vessels and contact with rays in Acacia Mangium. IAWA Journal, 2011, 32, 341-350.	2.7	9
157	Cell wall ultrastructure of palm leaf fibers. IAWA Journal, 2014, 35, 127-137.	2.7	9
158	Shrinkage and swelling behavior of archaeological waterlogged wood preserved with slightly crosslinked sodium polyacrylate. Journal of Wood Science, 2018, 64, 294-300.	0.9	9
159	Chemometrics Approach For Species Identification of Pinus densiflora Sieb. et Zucc. and Pinus densiflora for. erecta Uyeki - Species Classification Using Near-Infrared Spectroscopy in combination with Multivariate Analysis Journal of the Korean Wood Science and Technology, 2015, 43, 701-713.	0.8	9
160	Assessment of endoglucanase activity by analyzing the degree of cellulose polymerization and high-throughput analysis by near-infrared spectroscopy. Cellulose, 2016, 23, 1565-1572.	2.4	8
161	Natural durability of the culturally and historically important timber: Erythrophleum fordii wood against white-rot fungi. Journal of Wood Science, 2018, 64, 301-310.	0.9	8
162	Evaluation of chemical treatments on dimensional stabilization of archeological waterlogged hardwoods obtained from the Thang Long Imperial Citadel site, Vietnam. Journal of Wood Science, 2018, 64, 436-443.	0.9	8

#	Article	IF	CITATIONS
163	Aspects of Native Cellulose Microfibrils at Molecular Resolution Trends in Glycoscience and Glycotechnology, 1999, 11, 23-31.	0.0	7
164	Fully Hydrophobic Artificial Protein but Water Dispersible due to Large Dipole. Polymer Journal, 2006, 38, 381-386.	1.3	7
165	Preparation of fibrous cellulose by enzymatic polymerization using cross-linked mutant endoglucanase II. Chemical Communications, 2011, 47, 10127.	2.2	7
166	WOOD SELECTION OF ANCIENT TEMPLES IN THE SIKKIM HIMALAYAS. IAWA Journal, 2014, 35, 444-462.	2.7	7
167	DISTANCE FROM VESSELS CHANGES FIBER MORPHOLOGY IN ACACIA MANGIUM. IAWA Journal, 2015, 36, 36-43.	2.7	6
168	Site-directed mutagenesis of bacterial cellulose synthase highlights sulfur–arene interaction as key to catalysis. Carbohydrate Research, 2016, 434, 99-106.	1.1	6
169	Tuning the Viscoelasticity of Peptide Vesicles by Adjusting Hydrophobic Helical Blocks Comprising Amphiphilic Polypeptides. Langmuir, 2017, 33, 5423-5429.	1.6	6
170	Line monitoring by near-infrared chemometric technique for potential ethanol production from hydrothermally treated Eucalyptus globulus. Biochemical Engineering Journal, 2015, 97, 65-72.	1.8	5
171	Cellulose oxygen isotopic composition of teak (Tectona grandis) collected from Java Island: a tool for dendrochronological and dendroclimatological analysis. Dendrochronologia, 2018, 52, 80-86.	1.0	5
172	Direct observation of cellulase penetration in oven-dried pulp by confocal laser scanning microscopy. Cellulose, 2019, 26, 7653-7662.	2.4	5
173	Wood identification of Japanese Shinto deity statues in Matsunoo-taisha Shrine in Kyoto by synchrotron X-ray microtomography and conventional microscopy methods. Journal of Wood Science, 2019, 65, .	0.9	5
174	Wood identification of two anatomically similar Cupressaceae species based on two-dimensional microfibril angle mapping. Holzforschung, 2021, 75, 591-602.	0.9	5
175	Chemotaxonomical identification of Holocenic bogwood recovered after 2007 Niigataken Chuestsu-oki Earthquake. Holzforschung, 2012, 66, 951-957.	0.9	4
176	Identification and conservation of a Neolithic polypore. Journal of Cultural Heritage, 2015, 16, 869-875.	1.5	4
177	Unsymmetric vesicles with a different design on each side for near-infrared fluorescence imaging of tumor tissues. RSC Advances, 2015, 5, 14697-14703.	1.7	4
178	Diffusion of chemicals into archaeological waterlogged hardwoods obtained from the Thang Long Imperial Citadel site, Vietnam. Journal of Wood Science, 2018, 64, 836-844.	0.9	4
179	Evaluation of a model using local features and a codebook for wood identification. IOP Conference Series: Earth and Environmental Science, 2020, 415, 012029.	0.2	4
180	Histochemical structure and tensile properties of birch cork cell walls. Cellulose, 2022, 29, 2817-2827.	2.4	4

#	Article	IF	CITATIONS
181	The difference of cellulose crystal between softwoods and hardwoods Journal of Fiber Science and Technology, 1991, 47, 580-584.	0.0	4
182	NEIGHBORHOOD OF VESSELS: CHEMICAL COMPOSITION. Journal of Tropical Forest Science, 2017, 29, 267-274.	0.1	4
183	Spontaneous Assembly Formation of Cyclic Dimer of β-Amino Acid in Water. Chemistry Letters, 2004, 33, 810-811.	0.7	3
184	Biomimetic composites of deuterated bacterial cellulose and hemicelluloses studied with small-angle neutron scattering. European Polymer Journal, 2018, 104, 177-183.	2.6	3
185	Two-dimensional microfibril angle mapping via polarization microscopy for wood classification. IOP Conference Series: Earth and Environmental Science, 2020, 415, 012028.	0.2	3
186	Crystal Strucuture of Cellulose - Personal Overview of the Main Stream Idea. Journal of Fiber Science and Technology, 2006, 62, P.183-P.187.	0.0	3
187	New attempts with the keratin-metal/magnesium process for the conservation of archaeological waterlogged wood. Journal of Cultural Heritage, 2022, 54, 53-58.	1.5	3
188	The cellulose system of cladophora densa. Biology of the Cell, 1992, 75, 264-264.	0.7	2
189	Effect of morphological variability of incrusted pit membranes on efficiency of transverse compression to improve liquid uptake. Holzforschung, 2011, 65, .	0.9	2
190	Classification of Japanese Fagaceae Wood Based on Microscopic Image Analysis. , 2019, , .		2
191	The occurrence and development of intraxylary phloem in young Aquilaria sinensis shoots. IAWA Journal, 2019, 40, 23-42.	2.7	2
192	Anatomical traits of Cryptomeria japonica tree rings studied by wavelet convolutional neural network. IOP Conference Series: Earth and Environmental Science, 2020, 415, 012027.	0.2	2
193	Flexural anisotropy of rift-sawn softwood boards induced by the end-grain orientation. Journal of Wood Science, 2021, 67, .	0.9	2
194	Evaluation of image partitioning strategies for preserving spatial information of cross-sectional micrographs in automated wood recognition of Fagaceae. Journal of Wood Science, 2021, 67, .	0.9	2
195	Assessment of sungkai tree-ring δ18O proxy for paleoclimate reconstruction in western Java, Indonesia. Quaternary International, 2017, 432, 33-38.	0.7	1
196	Pre-1930 unstable relationship between climate and tree-ring width of Pinus taiwanensis hayata in southeastern China. Dendrochronologia, 2019, 57, 125629.	1.0	1
197	Comparison of Sungkai Tree-Ring Components and Meteorological Data from Western Java, Indonesia. Journal of Disaster Research, 2013, 8, 95-102.	0.4	1
198	Wood Identification of Building Components of the Tea Room Hasso-seki of Konchi-In Temple Designated as an Important Cultural Property. Mokuzai Gakkai Shi, 2011, 57, 14-19.	0.2	0

#	Article	IF	CITATIONS
199	Selective fluorescence labeling: time-lapse enzyme visualization during sugarcane hydrolysis. Journal of Wood Science, 2019, 65, .	0.9	0
200	Wood Identification of Western School "Janes ['] Mansion―in Kumamoto Prefecture Collapsed by the Kumamoto Earthquake. Mokuzai Gakkai Shi, 2019, 65, 33-38.	0.2	0
201	Classification of Wood Species Frequently Used for Modern and Ancient Buildings Utilizing Near-Infrared Spectroscopy with Multivariate Analysis and Enhancement of Its Generalization Performance. Mokuzai Gakkai Shi, 2020, 66, 171-182.	0.2	0
202	Academia-industry collaboration on cellulose—past and future. Cellulose, 2022, 29, 2743-2744.	2.4	0