
Ana Arenillas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4975360/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facile Synthesis of Unsupported Pd Aerogel for High Performance Formic Acid Microfluidic Fuel Cell. Materials, 2022, 15, 1422.	1.3	7
2	Hybrid RF-Si Xerogels: A Cost-Effective Proposal for Insulator Materials. Materials, 2022, 15, 265.	1.3	2
3	A promising silicon/carbon xerogel composite for high-rate and high-capacity lithium-ion batteries. Electrochimica Acta, 2022, 426, 140790.	2.6	5
4	Tortuosity of the porous structure of carbon gels. Carbon, 2021, 171, 921-930.	5.4	10
5	Synthesis of carbon fibers arrays by the sol-gel process. Journal of Sol-Gel Science and Technology, 2021, 98, 31-34.	1.1	2
6	Effect of the porosity and microstructure on the mechanical properties of organic xerogels. Journal of Materials Science, 2021, 56, 10312-10325.	1.7	8
7	Ultralightâ€Weight Graphene Aerogels with Extremely High Electrical Conductivity. Small, 2021, 17, e2103407.	5.2	17
8	Carbon/silica hybrid aerogels with controlled porosity by a quick one-pot synthesis. Journal of Non-Crystalline Solids, 2021, 569, 120992.	1.5	7
9	Effect of porous structure on doping and the catalytic performance of carbon xerogels towards the oxygen reduction reaction. Microporous and Mesoporous Materials, 2020, 293, 109811.	2.2	16
10	Graphitized Carbon Xerogels for Lithium-Ion Batteries. Materials, 2020, 13, 119.	1.3	5
11	Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels. Chemical Engineering Journal, 2020, 402, 126276.	6.6	19
12	Advantages of microwave-assisted synthesis of silica gels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 604, 125248.	2.3	9
13	Exploring the application of carbon xerogels as anodes for sodium-ion batteries. Microporous and Mesoporous Materials, 2020, 308, 110542.	2.2	8
14	Effect of Olive Kernel thermal treatment (torrefaction vs. slow pyrolysis) on the physicochemical characteristics and the CO2 or H2O gasification performance of as-prepared biochars. International Journal of Hydrogen Energy, 2020, , .	3.8	27
15	The relevance of conductive additive addition methodology for optimizing the performance of electrodes based on carbon xerogels in aqueous supercapacitors. Journal of Electroanalytical Chemistry, 2019, 836, 45-49.	1.9	7
16	Multiphase graphitisation of carbon xerogels and its dependence on their pore size. Carbon, 2019, 152, 704-714.	5.4	14
17	Organic and Carbon Gels. Advances in Sol-gel Derived Materials and Technologies, 2019, , .	0.3	15
18	Organic and Carbon Gels: From Laboratory to Industry?. Advances in Sol-gel Derived Materials and Technologies, 2019, , 1-26.	0.3	1

#	Article	IF	CITATIONS
19	Organic and Carbon Gels Derived from Biosourced Polyphenols. Advances in Sol-gel Derived Materials and Technologies, 2019, , 27-85.	0.3	2
20	Carbon Gels for Electrochemical Applications. Advances in Sol-gel Derived Materials and Technologies, 2019, , 149-189.	0.3	1
21	The synergistic catalyst-carbonates effect on the direct bituminous coal fuel cell performance. International Journal of Hydrogen Energy, 2019, 44, 10033-10042.	3.8	8
22	The role of conductive additives on the performance of hybrid carbon xerogels as electrodes in aqueous supercapacitors. Electrochimica Acta, 2019, 295, 693-702.	2.6	18
23	The combined impact of carbon type and catalyst-aided gasification process on the performance of a Direct Carbon Solid Oxide Fuel Cell. Solid State Ionics, 2018, 317, 268-275.	1.3	8
24	Performance of carbon xerogel-graphene hybrids as electrodes in aqueous supercapacitors. Electrochimica Acta, 2018, 276, 28-36.	2.6	26
25	Load-dependent surface diffusion model for analyzing the kinetics of protein adsorption onto mesoporous materials. Journal of Colloid and Interface Science, 2018, 511, 27-38.	5.0	16
26	Determinant influence of the electrical conductivity versus surface area on the performance of graphene oxide-doped carbon xerogel supercapacitors. Carbon, 2018, 126, 456-463.	5.4	30
27	Carbon Xerogels: The Bespoke Nanoporous Carbons. , 2018, , .		2
28	Carbon xerogels graphitized by microwave heating as anode materials in lithium-ion batteries. Carbon, 2018, 137, 384-394.	5.4	37
29	Change of self-discharge mechanism as a fast tool for estimating long-term stability of ionic liquid based supercapacitors. Journal of Power Sources, 2018, 396, 220-229.	4.0	47
30	Understanding the Influence of the Biomass-Derived Alcohols on the Activity and Stability of Pt Nanoparticles Supported on Graphene Nanoribbons. Electrocatalysis, 2017, 8, 151-163.	1.5	10
31	Exploring the potential of resorcinol-formaldehyde xerogels as thermal insulators. Microporous and Mesoporous Materials, 2017, 244, 50-54.	2.2	24
32	Carbon Gels and Their Applications: A Review of Patents. , 2017, , 25-52.		8
33	On the desiccant capacity of the mesoporous RF-xerogels. Microporous and Mesoporous Materials, 2017, 248, 1-6.	2.2	6
34	Protein adsorption and activity on carbon xerogels with narrow pore size distributions covering a wide mesoporous range. Carbon, 2017, 118, 743-751.	5.4	12
35	Microporous carbon spheres derived from resorcinol-formaldehyde solutions. A new approach to coat supports. Microporous and Mesoporous Materials, 2017, 252, 154-160.	2.2	12
36	Superhydrophobic and breathable resorcinol-formaldehyde Xerogels. Journal of Non-Crystalline Solids, 2017, 471, 202-208.	1.5	11

#	Article	IF	CITATIONS
37	Graphene-doped carbon xerogel combining high electrical conductivity and surface area for optimized aqueous supercapacitors. Carbon, 2017, 118, 291-298.	5.4	58
38	Synthesis of hydrophobic resorcinol–formaldehyde xerogels by grafting with silanes. Reactive and Functional Polymers, 2017, 120, 92-97.	2.0	7
39	Acid-based resorcinol-formaldehyde xerogels synthesized by microwave heating. Journal of Sol-Gel Science and Technology, 2017, 84, 60-69.	1.1	18
40	An underrated variable essential for tailoring the structure of xerogel: the methanol content of commercial formaldehyde solutions. Journal of Sol-Gel Science and Technology, 2017, 83, 478-488.	1.1	9
41	Syngas obtained by microwave pyrolysis of household wastes as feedstock for polyhydroxyalkanoate production in <i>Rhodospirillum rubrum</i> . Microbial Biotechnology, 2017, 10, 1412-1417.	2.0	29
42	Microwave-induced cracking of pyrolytic tars coupled to microwave pyrolysis for syngas production. Bioresource Technology, 2016, 218, 687-691.	4.8	23
43	Comparative study of durability of hybrid direct carbon fuel cells with anthracite coal and bituminous coal. International Journal of Hydrogen Energy, 2016, 41, 18797-18806.	3.8	21
44	A visual validation of the combined effect of pH and dilution on the porosity of carbon xerogels. Microporous and Mesoporous Materials, 2016, 223, 89-93.	2.2	40
45	Ecotoxicity tests on solid residues from microwave induced pyrolysis of different organic residues: An addendum. Journal of Analytical and Applied Pyrolysis, 2016, 121, 329-332.	2.6	6
46	Role of coal characteristics in the electrochemical behaviour of hybrid direct carbon fuel cells. Energy and Environmental Science, 2016, 9, 2868-2880.	15.6	46
47	Influence of alkaline compounds on the porosity of resorcinol-formaldehyde xerogels. Journal of Non-Crystalline Solids, 2016, 452, 286-290.	1.5	13
48	Aqueous and organic inks of carbon xerogels as models for studying the role of porosity in lithium-ion battery electrodes. Materials and Design, 2016, 109, 282-288.	3.3	22
49	Desiccant capability of organic xerogels: Surface chemistry vs porous texture. Microporous and Mesoporous Materials, 2016, 232, 70-76.	2.2	22
50	Dielectric characterization of biodegradable wastes during pyrolysis. Fuel, 2016, 172, 146-152.	3.4	31
51	Advances in tailoring the porosity of tannin-based carbon xerogels. Industrial Crops and Products, 2016, 82, 100-106.	2.5	26
52	Application of infiltrated LSCM–GDC oxide anode in direct carbon/coal fuel cells. Faraday Discussions, 2016, 190, 269-289.	1.6	21
53	Effect of fuel thermal pretreament on the electrochemical performance of a direct lignite coal fuel cell. Solid State Ionics, 2016, 288, 140-146.	1.3	14
54	Selectivity matters: Graphene oxide-mediated oxidative coupling of benzylamine to N‑benzylidine-1-phenylmethanamine under microwave irradiation. Journal of Molecular Catalysis A, 2015, 406, 19-22.	4.8	12

#	Article	IF	CITATIONS
55	Hybrid direct carbon fuel cell anode processes investigated using a 3-electrode half-cell setup. International Journal of Hydrogen Energy, 2015, 40, 1945-1958.	3.8	15
56	Comparing the composition of the synthesis-gas obtained from the pyrolysis of different organic residues for a potential use in the synthesis of bioplastics. Journal of Analytical and Applied Pyrolysis, 2015, 111, 55-63.	2.6	35
57	Direct utilization of lignite coal in a Co–CeO 2 /YSZ/Ag solid oxide fuel cell. International Journal of Hydrogen Energy, 2015, 40, 14353-14363.	3.8	21
58	The enhancement of porosity of carbon xerogels by using additives. Microporous and Mesoporous Materials, 2015, 217, 39-45.	2.2	9
59	Oil fractions from the pyrolysis of diverse organic wastes: The different effects of conventional and microwave induced pyrolysis. Journal of Analytical and Applied Pyrolysis, 2015, 114, 256-264.	2.6	17
60	Towards a feasible and scalable production of bio-xerogels. Journal of Colloid and Interface Science, 2015, 456, 138-144.	5.0	15
61	Microwave Pyrolysis of Organic Wastes for Syngas-Derived Biopolymers Production. Biofuels and Biorefineries, 2015, , 99-127.	0.5	1
62	Energy consumption estimation in the scaling-up of microwave heating processes. Chemical Engineering and Processing: Process Intensification, 2015, 95, 1-8.	1.8	84
63	Effect of methanol content in commercial formaldehyde solutions on the porosity of RF carbon xerogels. Journal of Non-Crystalline Solids, 2015, 426, 13-18.	1.5	21
64	Graphene oxide-catalysed oxidation reaction of unsaturated compounds under microwave irradiation. Catalysis Communications, 2015, 72, 133-137.	1.6	12
65	Influence of carrier gas on microwave-induced pyrolysis. Journal of Analytical and Applied Pyrolysis, 2015, 113, 153-157.	2.6	11
66	Simultaneous adjustment of the main chemical variables to fine-tune the porosity of carbon xerogels. Carbon, 2014, 78, 490-499.	5.4	50
67	Performance of Direct Carbon Fuel Cells Operated on Coal and Effect of Operation Mode. Journal of the Electrochemical Society, 2014, 161, F588-F593.	1.3	35
68	Application of Ternary Carbonate in Hybrid Direct Coal Fuel Cells. ECS Transactions, 2014, 59, 281-288.	0.3	7
69	Integrated microwave drying, pyrolysis and gasification for valorisation of organic wastes to syngas. Fuel, 2014, 132, 20-26.	3.4	43
70	Agglomeration and Cleaning of Carbon Supported Palladium Nanoparticles in Electrochemical Environment. Electrocatalysis, 2014, 5, 204-212.	1.5	19
71	Optimization of the process variables in the microwave-induced synthesis of carbon xerogels. Journal of Sol-Gel Science and Technology, 2014, 69, 488-497.	1.1	26
72	Effect of unequal load of carbon xerogel in electrodes on the electrochemical performance of asymmetric supercapacitors. Journal of Applied Electrochemistry, 2014, 44, 481-489.	1.5	11

#	Article	IF	CITATIONS
73	Optimization of microalgae oil extraction under ultrasound and microwave irradiation. Journal of Chemical Technology and Biotechnology, 2014, 89, 1779-1784.	1.6	72
74	RF xerogels with tailored porosity over the entire nanoscale. Microporous and Mesoporous Materials, 2014, 195, 266-275.	2.2	60
75	The effect of the carbon surface chemistry and electrolyte pH on the energy storage of supercapacitors. RSC Advances, 2014, 4, 32398-32404.	1.7	45
76	An electrical conductivity translator for carbons. Measurement: Journal of the International Measurement Confederation, 2014, 56, 215-218.	2.5	27
77	Remarkable electrochemical stability of one-step synthesized Pd nanoparticles supported on graphene and multi-walled carbon nanotubes. Nano Energy, 2014, 9, 142-151.	8.2	34
78	Effect of carbon type on the performance of a direct or hybrid carbon solid oxide fuel cell. RSC Advances, 2014, 4, 18792-18800.	1.7	42
79	Microwave-induced low temperature pyrolysis of macroalgae for unprecedented hydrogen-enriched syngas production. RSC Advances, 2014, 4, 38144-38151.	1.7	20
80	New concept for energy storage: Microwave-induced carbon gasification with CO2. Energy Conversion and Management, 2014, 78, 559-564.	4.4	48
81	Influence of the microwave absorbent and moisture content on the microwave pyrolysis of an organic municipal solid waste. Journal of Analytical and Applied Pyrolysis, 2014, 105, 234-240.	2.6	57
82	Molienda asistida con microondas de un coque metalúrgico. Revista De Metalurgia, 2014, 50, e013.	0.1	0
83	Microwave pyrolysis of microalgae for high syngas production. Bioresource Technology, 2013, 144, 240-246.	4.8	134
84	Hybrid Direct Carbon Fuel Cells with Different Types of Mineral Coal. ECS Transactions, 2013, 57, 3013-3021.	0.3	14
85	New process for producing methanol from coke oven gas by means of CO2 reforming. Comparison with conventional process. Fuel Processing Technology, 2013, 115, 215-221.	3.7	54
86	Optimizing the electrochemical performance of aqueous symmetric supercapacitors based on an activated carbon xerogel. Journal of Power Sources, 2013, 241, 776-782.	4.0	68
87	Optimizing the performance of supercapacitors based on carbon electrodes and protic ionic liquids as electrolytes. Electrochimica Acta, 2013, 108, 361-368.	2.6	49
88	Carbonisation of resorcinol–formaldehyde organic xerogels: Effect of temperature, particle size and heating rate on the porosity of carbon xerogels. Journal of Analytical and Applied Pyrolysis, 2013, 100, 111-116.	2.6	60
89	An overview of novel technologies to valorise coke oven gas surplus. Fuel Processing Technology, 2013, 110, 150-159.	3.7	116
90	Microwave synthesis of micro-mesoporous activated carbon xerogels for high performance supercapacitors. Microporous and Mesoporous Materials, 2013, 168, 206-212.	2.2	63

#	Article	IF	CITATIONS
91	CO2 Separation and Capture Properties of Porous Carbonaceous Materials from Leather Residues. Materials, 2013, 6, 4641-4653.	1.3	24
92	Microwave-assisted pyrolysis of biomass feedstocks: the way forward?. Energy and Environmental Science, 2012, 5, 5481-5488.	15.6	234
93	Equilibrium prediction of CO2 reforming of coke oven gas: Suitability for methanol production. Chemical Engineering Science, 2012, 82, 95-103.	1.9	42
94	Mixtures of Steel-Making Slag and Carbons as Catalyst for Microwave-Assisted Dry Reforming of CH4. Chinese Journal of Catalysis, 2012, 33, 1115-1118.	6.9	13
95	Carbon xerogels as electrochemical supercapacitors. Relation between impedance physicochemical parameters and electrochemical behaviour. International Journal of Hydrogen Energy, 2012, 37, 10249-10255.	3.8	10
96	High energy ultracapacitor based on carbon xerogel electrodes and sodium sulfate electrolyte. Journal of Power Sources, 2012, 214, 137-141.	4.0	21
97	Electrochemical effect of carbon nanospheres on an AB5 alloy. International Journal of Hydrogen Energy, 2012, 37, 14978-14982.	3.8	9
98	Pulses of microwave radiation to improve coke grindability. Fuel, 2012, 102, 65-71.	3.4	27
99	Electrochemical behavior and capacitance properties of carbon xerogel/multiwalled carbon nanotubes composites. Journal of Solid State Electrochemistry, 2012, 16, 1067-1076.	1.2	13
100	A microwave-based method for the synthesis of carbon xerogel spheres. Carbon, 2012, 50, 3555-3560.	5.4	17
101	CO2 reforming of coke oven gas over a Ni/γAl2O3 catalyst to produce syngas for methanol synthesis. Fuel, 2012, 94, 197-203.	3.4	89
102	Syngas from CO2 reforming of coke oven gas: Synergetic effect of activated carbon/Ni–γAl2O3 catalyst. International Journal of Hydrogen Energy, 2011, 36, 13361-13368.	3.8	32
103	Mixtures of carbon and Ni/Al2O3 as catalysts for the microwave-assisted CO2 reforming of CH4. Fuel Processing Technology, 2011, 92, 1531-1536.	3.7	60
104	Ball lightning plasma and plasma arc formation during the microwave heating of carbons. Carbon, 2011, 49, 346-349.	5.4	139
105	Fast microwave-assisted synthesis of tailored mesoporous carbon xerogels. Journal of Colloid and Interface Science, 2011, 357, 541-547.	5.0	62
106	Heterogeneous reaction mechanisms of the reduction of nitric oxide on carbon surfaces: a theoretical analysis. Theoretical Chemistry Accounts, 2010, 127, 95-108.	0.5	21
107	Comparative study of conventional and microwave-assisted pyrolysis, steam and dry reforming of glycerol for syngas production, using a carbonaceous catalyst. Journal of Analytical and Applied Pyrolysis, 2010, 88, 155-159.	2.6	73
108	Dry reforming of coke oven gases over activated carbon to produce syngas for methanol synthesis. Fuel, 2010, 89, 2897-2902.	3.4	102

#	Article	IF	CITATIONS
109	Influence of porosity and surface groups on the catalytic activity of carbon materials for the microwave-assisted CO2 reforming of CH4. Fuel, 2010, 89, 4002-4007.	3.4	40
110	Microwave heating processes involving carbon materials. Fuel Processing Technology, 2010, 91, 1-8.	3.7	833
111	Synthesis of carbon-supported nickel catalysts for the dry reforming of CH4. Fuel Processing Technology, 2010, 91, 765-769.	3.7	56
112	Ni-doped carbon xerogels for H2 storage. Carbon, 2010, 48, 2722-2733.	5.4	47
113	A comparison of physical activation of carbon xerogels with carbon dioxide with chemical activation using hydroxides. Carbon, 2010, 48, 3157-3168.	5.4	77
114	Synergetic effect of a mixture of activated carbon+Ni/Al2O3 used as catalysts for the CO2 reforming of CH4. Applied Catalysis A: General, 2010, 390, 78-83.	2.2	48
115	Precise determination of the point of sol–gel transition in carbon gel synthesis using a microwave heating method. Carbon, 2010, 48, 3305-3308.	5.4	17
116	Ni-Doped Carbons as a Carbon Support for Metal Hydride Electrodes. Energy & Fuels, 2010, 24, 3302-3306.	2.5	6
117	Exploring New Routes in the Synthesis of Carbon Xerogels for Their Application in Electric Double-Layer Capacitors. Energy & Fuels, 2010, 24, 3334-3339.	2.5	52
118	Expanded graphite as an intercalation anode material for lithium systems. Journal of Solid State Electrochemistry, 2009, 13, 1467-1471.	1.2	3
119	Microwave-assisted synthesis of CuO/ZnO and CuO/ZnO/Al2O3 precursors using urea hydrolysis. Solid State Ionics, 2009, 180, 1372-1378.	1.3	24
120	Pyrolysis of glycerol over activated carbons for syngas production. Journal of Analytical and Applied Pyrolysis, 2009, 84, 145-150.	2.6	137
121	Studying chemical activation in carbon xerogels. Journal of Materials Science, 2009, 44, 6583-6590.	1.7	21
122	Growth of carbon nanofilaments on coal foams. Fuel, 2009, 88, 46-53.	3.4	15
123	Carbon materials for H2 storage. International Journal of Hydrogen Energy, 2009, 34, 4575-4581.	3.8	103
124	Improving hydrogen storage in Ni-doped carbon nanospheres. International Journal of Hydrogen Energy, 2009, 34, 3070-3076.	3.8	73
125	Developing strategies for the regeneration of polyethylenimine based CO2 adsorbents. Energy Procedia, 2009, 1, 875-880.	1.8	26
126	Development of adsorbent technologies for post-combustion CO2 capture. Energy Procedia, 2009, 1, 881-884.	1.8	53

#	Article	IF	CITATIONS
127	Effect of carbon support on the kinetic behaviour of a metal hydride electrode. Electrochimica Acta, 2009, 54, 2010-2017.	2.6	10
128	Growth of nanofilaments on carbon-based materials from microwave-assisted decomposition of CH4. Applied Surface Science, 2008, 254, 3553-3557.	3.1	33
129	Preparation of Ni-doped carbon nanospheres with different surface chemistry and controlled pore structure. Applied Surface Science, 2008, 254, 3993-4000.	3.1	14
130	Application of thermogravimetric analysis to the evaluation of aminated solid sorbents for CO2 capture. Journal of Thermal Analysis and Calorimetry, 2008, 92, 601-606.	2.0	143
131	Naphthalene adsorption on activated carbons using solvents of different polarity. Adsorption, 2008, 14, 343-355.	1.4	29
132	H2 storage in carbon materials. Adsorption, 2008, 14, 557-566.	1.4	38
133	Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies. Microporous and Mesoporous Materials, 2008, 116, 504-512.	2.2	236
134	Tailoring the textural properties of activated carbon xerogels by chemical activation with KOH. Microporous and Mesoporous Materials, 2008, 115, 480-490.	2.2	74
135	Development of microporous carbon xerogels by controlling synthesis conditions. Journal of Non-Crystalline Solids, 2008, 354, 817-825.	1.5	50
136	Microwave drying as an effective method to obtain porous carbon xerogels. Journal of Non-Crystalline Solids, 2008, 354, 4024-4026.	1.5	37
137	A comparison of characterization methods based on N2 and CO2 adsorption for the assessment of the pore size distribution of carbons. Studies in Surface Science and Catalysis, 2007, 160, 319-326.	1.5	9
138	Removal of naphthalene from aqueous solution on chemically modified activated carbons. Water Research, 2007, 41, 333-340.	5.3	76
139	Effects of activated carbon properties on the adsorption of naphthalene from aqueous solutions. Applied Surface Science, 2007, 253, 5741-5746.	3.1	58
140	On the mechanism of reactive adsorption of dibenzothiophene on organic waste derived carbons. Applied Surface Science, 2007, 253, 5899-5903.	3.1	45
141	Carbon nanofilament synthesis by the decomposition of CH4/CO2 under microwave heating. Carbon, 2007, 45, 1706-1709.	5.4	17
142	Synthetic coal chars for the elucidation of NO heterogeneous reduction mechanisms. Fuel, 2007, 86, 41-49.	3.4	45
143	Preparation of carbon dioxide adsorbents from the chemical activation of urea–formaldehyde and melamine–formaldehyde resins. Fuel, 2007, 86, 22-31.	3.4	233
144	Ignition characteristics of coal blends in an entrained flow furnace. Fuel, 2007, 86, 2076-2080.	3.4	53

#	Article	IF	CITATIONS
145	CO2 capture by adsorption with nitrogen enriched carbons. Fuel, 2007, 86, 2204-2212.	3.4	451
146	Structural Changes in Polyethylene Terephthalate (PET) Waste Materials Caused by Pyrolysis and CO2 Activation. Adsorption Science and Technology, 2006, 24, 439-450.	1.5	21
147	Activation of carbon nanofibres for hydrogen storage. Carbon, 2006, 44, 1376-1385.	5.4	79
148	CO2 removal potential of carbons prepared by co-pyrolysis of sugar and nitrogen containing compounds. Journal of Analytical and Applied Pyrolysis, 2005, 74, 298-306.	2.6	46
149	Ignition behaviour of different rank coals in an entrained flow reactor. Fuel, 2005, 84, 2172-2177.	3.4	51
150	CO2 capture using some fly ash-derived carbon materials. Fuel, 2005, 84, 2204-2210.	3.4	239
151	Prediction of unburned carbon and NOx in a tangentially fired power station using single coals and blends. Fuel, 2005, 84, 2196-2203.	3.4	97
152	Heterogeneous reduction of nitric oxide on synthetic coal chars. Fuel, 2005, 84, 2275-2279.	3.4	31
153	Carbon foams from coals. A preliminary study. Fuel, 2005, 84, 2184-2189.	3.4	62
154	Surface modification of low cost carbons for their application in the environmental protection. Applied Surface Science, 2005, 252, 619-624.	3.1	122
155	Pyrolysis of activated carbons exhausted with organic compounds. Journal of Analytical and Applied Pyrolysis, 2005, 74, 518-524.	2.6	36
156	Evaluation of the combustion behaviour of perhydrous coals by thermal analysis. Journal of Thermal Analysis and Calorimetry, 2005, 81, 333-337.	2.0	9
157	Use of Nitrogen Stable Isotope Analysis To Understand Char Nitrogen Evolution during the Fluidized-Bed Co-combustion of Coal and Sewage Sludge. Energy & Fuels, 2005, 19, 485-488.	2.5	7
158	Effect of the Polymerization with Formaldehyde on the Thermal Reactivity of a Low-Temperature Coal Tar Pitch. Energy & Fuels, 2005, 19, 374-381.	2.5	4
159	STUDY OF THE EVOLUTION OF NITROGEN COMPOUNDS DURING COAL DEVOLATILIZATION. Clean Air, 2005, 6, 393-408.	0.0	1
160	NOx EMISSIONS AND COMBUSTIBILITY CHARACTERISTICS OF COAL BLENDS. Clean Air, 2005, 6, 83-97.	0.0	1
161	A STUDY OF THE HETEROGENEOUS REDUCTION OF NO ON BITUMINOUS COAL CHARS. International Journal of Energy for A Clean Environment, 2004, 5, 18.	0.6	0
162	Relationship between structure and reactivity of carbonaceous materials. Journal of Thermal Analysis and Calorimetry, 2004, 76, 593-602.	2.0	39

#	Article	IF	CITATIONS
163	A TG/DTA study on the effect of coal blending on ignition behaviour. Journal of Thermal Analysis and Calorimetry, 2004, 76, 603-614.	2.0	74
164	Supercritical gas extracts from low-quality coals: on the search of new precursors for carbon materials. Fuel Processing Technology, 2004, 86, 205-222.	3.7	10
165	Effects of oxidative treatments with air and CO2 on vapour grown carbon nanofibres (VGCNFs) produced at industrial scale. Thermochimica Acta, 2004, 423, 99-106.	1.2	19
166	Characterisation of model compounds and a synthetic coal by TG/MS/FTIR to represent the pyrolysis behaviour of coal. Journal of Analytical and Applied Pyrolysis, 2004, 71, 747-763.	2.6	105
167	High value carbon materials from PET recycling. Applied Surface Science, 2004, 238, 304-308.	3.1	61
168	Surface characterisation of synthetic coal chars made from model compounds. Carbon, 2004, 42, 1345-1350.	5.4	15
169	A study of mesophase formation from a low temperature coal tar pitch using formaldehyde as a promoter for polymerisation. Carbon, 2004, 42, 2762-2765.	5.4	9
170	Textural development and hydrogen adsorption of carbon materials from PET waste. Journal of Alloys and Compounds, 2004, 379, 280-289.	2.8	66
171	Materiales carbonosos obtenidos a partir del reciclado de PET. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2004, 43, 547-549.	0.9	5
172	Comparison between the reactivity of coal and synthetic coal modelsâ~†. Fuel, 2003, 82, 2001-2006.	3.4	26
173	Combustion behaviour of ultra clean coal obtained by chemical demineralisation. Fuel, 2003, 82, 2145-2151.	3.4	33
174	Thermal behaviour during the pyrolysis of low rank perhydrous coals. Journal of Analytical and Applied Pyrolysis, 2003, 68-69, 371-385.	2.6	179
175	Curing Temperature Effect on Mechanical Strength of Smokeless Fuel Briquettes Prepared with Humates. Energy & Fuels, 2003, 17, 419-423.	2.5	5
176	Textural characterisation of activated carbons obtained from poly(ethylene terephthalate) by carbon dioxide activation. Studies in Surface Science and Catalysis, 2002, , 537-543.	1.5	23
177	Nitric Oxide Reduction in Coal Combustion:Â Role of Char Surface Complexes in Heterogeneous Reactions. Environmental Science & Technology, 2002, 36, 5498-5503.	4.6	54
178	A Comparative Tg-Ms Study of the Carbonization Behavior of Different Pitches. Energy & Fuels, 2002, 16, 935-943.	2.5	27
179	Active surface area of carbon materials determined by different methods. Studies in Surface Science and Catalysis, 2002, 144, 209-216.	1.5	3
180	Thermogravimetric–mass spectrometric study on the evolution of nitrogen compounds during coal devolatilisation. Journal of Analytical and Applied Pyrolysis, 2002, 65, 57-70.	2.6	14

#	Article	IF	CITATIONS
181	Influence of char structure on reactivity and nitric oxide emissions. Fuel Processing Technology, 2002, 77-78, 103-109.	3.7	28
182	Coal structure and reactivity changes induced by chemical demineralisation. Fuel Processing Technology, 2002, 79, 273-279.	3.7	72
183	Modification of combustion behaviour and NO emissions by coal blending. Fuel Processing Technology, 2002, 77-78, 111-117.	3.7	46
184	Modelling of NO formation in the combustion of coal blends. Fuel, 2002, 81, 627-636.	3.4	42
185	A comparison of ASA values determined by different methods. Carbon, 2002, 40, 1381-1383.	5.4	8
186	A comparison of different methods for predicting coal devolatilisation kinetics. Journal of Analytical and Applied Pyrolysis, 2001, 58-59, 685-701.	2.6	119
187	Simultaneous thermogravimetric–mass spectrometric study on the pyrolysis behaviour of different rank coals. Journal of Analytical and Applied Pyrolysis, 1999, 50, 31-46.	2.6	189
188	Modelling NOx formation in coal particle combustion at high temperature: an investigation of the devolatilisation kinetic factors. Fuel, 1999, 78, 1171-1179.	3.4	70
189	Textural properties in density-separated coal fractions. Fuel, 1999, 78, 1631-1637.	3.4	10
190	The effect of the textural properties of bituminous coal chars on NO emissions. Fuel, 1999, 78, 1779-1785.	3.4	36
191	Effect of the grinding behaviour of coal blends on coal utilisation for combustion. Powder Technology, 1999, 105, 351-356.	2.1	47
192	Biodesulfurization of Coals of Different Rank:Â Effect on Combustion Behavior. Environmental Science & Technology, 1999, 33, 476-481.	4.6	9
193	Microwave Heating Applied to Pyrolysis. , 0, , .		41

194 Designing Nanostructured Carbon Xerogels. , 0, , .

5