Zhenggen Zha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4975310/publications.pdf

Version: 2024-02-01

186265 214800 2,340 55 28 h-index citations papers

g-index 57 57 57 2022 docs citations times ranked citing authors all docs

47

#	Article	IF	CITATIONS
1	Construction of Chiral <scp>Allâ€Carbon</scp> Quaternary Stereocenters by Asymmetric Friedelâ^'Crafts Reaction of Isatin Derivatives. Chinese Journal of Chemistry, 2022, 40, 195-200.	4.9	9
2	Iodine-mediated electrochemical C(sp ³) $\hat{a}\in H$ cyclization: the synthesis of quinazolinone-fused N-heterocycles. Chemical Communications, 2022, 58, 411-414.	4.1	16
3	Zn-Catalyzed enantioselective allylation and allenylation of isatins by virtue of a proline-derived chiral ligand. Chemical Communications, 2022, 58, 2156-2159.	4.1	2
4	lodine-mediated oxythiolation of <i>>o</i> -vinylanilides with disulfides for the synthesis of benzoxazines. RSC Advances, 2022, 12, 7347-7351.	3.6	2
5	Copper-Catalyzed Stereoselective [4 + 2] Cycloaddition of \hat{I}^2 , \hat{I}^3 -Unsaturated \hat{I} ±-Keto Esters and 2-Vinylpyrroles in Water. Organic Letters, 2022, 24, 4224-4228.	4.6	9
6	Stereoselective Copperâ€Catalyzed Direct Aldol Reaction of β, γâ€Unsaturated αâ€Ketoesters with Coumaranâ€3â€Ones. Chemistry - A European Journal, 2021, 27, 581-584.	3.3	11
7	Selective electrochemical oxidation of aromatic hydrocarbons and preparation of mono/multi-carbonyl compounds. Science China Chemistry, 2021, 64, 2134-2141.	8.2	19
8	Copperâ€Catalyzed Enantioselective Mukaiyama Aldol Reaction of Silyl Enol Ethers with Isatinâ€Derived Oxindolyl β,γâ€Unsaturated αâ€Keto Esters. ChemistrySelect, 2021, 6, 410-414.	1.5	5
9	lodine-Mediated Electrochemical C(sp ²)–H Amination: Switchable Synthesis of Indolines and Indoles. Organic Letters, 2020, 22, 5773-5777.	4.6	53
10	Electrosynthesis of Quinazolines and Quinazolinones via an Anodic Direct Oxidation C(sp ³)-H Amination/C-N Cleavage of Tertiary Amine in Aqueous Medium. ACS Omega, 2020, 5, 31963-31973.	3.5	9
11	Recent Advances in Câ^'H Functionalization with Electrochemistry and Various Iodineâ€Containing Reagents. ChemElectroChem, 2020, 7, 2527-2544.	3.4	35
12	Copper Catalyzed Diastereo- and Enantioselective 1,4-Addition Michael Reaction of 2,3-Dioxopyrrolidines with Nitroalkanes in Aqueous Media. Organic Letters, 2020, 22, 2512-2516.	4.6	19
13	Lewis Acid-Catalyzed Enantioselective Friedel–Crafts Alkylation of Pyrrole in Water. ACS Omega, 2020, 5, 11962-11970.	3.5	19
14	Electrocatalytic Three-Component Reaction: Synthesis of Cyanide-Functionalization Imidazo-Fused <i>N</i> -Heterocycles. Organic Letters, 2019, 21, 6403-6407.	4.6	57
15	Copper-catalyzed enantioselective Mukaiyama aldol reaction of silyl enol ethers with isatins. Chemical Communications, 2019, 55, 6309-6312.	4.1	14
16	Asymmetric synthesis of fluoroalkylated <i>N</i> , <i>O</i> -ketals <i>via</i> an organocatalytic dehydration/aminalization/aza-Michael desymmetrization. Organic Chemistry Frontiers, 2019, 6, 942-945.	4.5	15
17	Electrocatalytic Tandem Synthesis of 1,3-Disubstituted Imidazo[1,5- <i>a</i>]quinolines via Sequential Dual Oxidative C(sp3)–H Amination in Aqueous Medium. Journal of Organic Chemistry, 2019, 84, 3148-3157.	3.2	48
18	Multifunctionalization of Unactivated Cyclic Ketones via an Electrochemical Process: Access to Cyclic α-Enaminones. Journal of Organic Chemistry, 2019, 84, 1647-1653.	3.2	24

#	Article	IF	CITATIONS
19	Electrocatalytic Fixation of Carbon Dioxide with Amines and Arylketones. ChemElectroChem, 2019, 6, 4292-4296.	3.4	13
20	The synthesis of benzimidazoles <i>via</i> a recycled palladium catalysed hydrogen transfer under mild conditions. Organic and Biomolecular Chemistry, 2018, 16, 2088-2096.	2.8	23
21	$\langle scp \rangle \langle scp \rangle$ -Phenylalanine potassium catalyzed asymmetric formal [3 + 3] annulation of 2-enoyl-pyridine $\langle i \rangle N \langle i \rangle$ -oxides with acetone. Organic Chemistry Frontiers, 2018, 5, 376-379.	4.5	9
22	Electrocatalytic Intermolecular C(sp ³)â€"H/Nâ€"H Coupling of Methyl <i>N</i> Heteroaromatics with Amines and Amino Acids: Access to Imidazo-Fused <i>N</i> Heterocycles. Organic Letters, 2018, 20, 6359-6363.	4.6	73
23	lodine-catalyzed diamination of styrene in water with the oxidation of H ₂ O ₂ . Green Chemistry, 2018, 20, 3927-3930.	9.0	24
24	Enantioselective Michael Addition of Pyrroles with Nitroalkenes in Aqueous Media Catalyzed by a Water-Soluble Catalyst. Journal of Organic Chemistry, 2018, 83, 7491-7499.	3.2	9
25	Copper-Catalyzed Chemoselective and Enantioselective Friedel–Crafts 1,2-Addition of Pyrrole with β,γ-Unsaturated α-Ketoesters. Journal of Organic Chemistry, 2017, 82, 5102-5110.	3.2	15
26	Copper-catalyzed S-methylation of sulfonyl hydrazides with TBHP for the synthesis of methyl sulfones in water. Green Chemistry, 2017, 19, 112-116.	9.0	83
27	Electrocatalytic C–H/N–H Coupling of 2′-Aminoacetophenones for the Synthesis of Isatins. Journal of Organic Chemistry, 2017, 82, 6434-6440.	3.2	88
28	Copper-Catalyzed Enantioselective Henry Reaction of \hat{l}^2 , \hat{l}^3 -Unsaturated \hat{l} ±-Ketoesters with Nitromethane in Water. Organic Letters, 2017, 19, 6416-6419.	4.6	28
29	Efficient electrosynthesis of phosphinic amides via oxidative cross-coupling between N–H/P–H. Green Chemistry, 2017, 19, 4769-4773.	9.0	79
30	Asymmetric Formal Aza-Diels–Alder Reaction of Trifluoromethyl Hemiaminals with Enones Catalyzed by Primary Amines. Journal of Organic Chemistry, 2016, 81, 3177-3187.	3.2	18
31	Heterogeneous Palladiumâ€Catalyzed Hydrogenâ€Transfer Cyclization of Nitroacetophenones with Benzylamines: Access to Câ^'N Bonds. ChemCatChem, 2016, 8, 3565-3569.	3.7	22
32	Electrosynthesis of $(\langle i \rangle E \langle i \rangle)$ -Vinyl Sulfones Directly from Cinnamic Acids and Sodium Sulfinates via Decarboxylative Sulfono Functionalization. Journal of Organic Chemistry, 2016, 81, 4876-4882.	3.2	95
33	Electrochemical synthesis of $\hat{l}\pm$ -enaminones from aryl ketones. Chemical Communications, 2016, 52, 8600-8603.	4.1	45
34	Copper-Catalyzed Enantioselective Hetero-Diels–Alder Reaction of Danishefsky's Diene with Glyoxals. Journal of Organic Chemistry, 2016, 81, 2993-2999.	3.2	19
35	Catalyst-free thiolation of indoles with sulfonyl hydrazides for the synthesis of 3-sulfenylindoles in water. Green Chemistry, 2016, 18, 2609-2613.	9.0	113
36	Ligand-Free Pd-Catalyzed Domino Synthesis of Carbazoles via Dehydrogenative Aromatization/C(sp ²)–C(sp ²) Coupling Sequence. Organic Letters, 2016, 18, 1278-1281.	4.6	37

3

#	Article	IF	CITATIONS
37	Highly Diastereo―and Enantioselective Michael Addition of Nitroalkanes to 2â€Enoylâ€Pyridine <i>N</i> à€Oxides Catalyzed by Scandium(III)/Copper(II) Complexes. Chemistry - A European Journal, 2015, 21, 12885-12888.	3.3	26
38	Electrosynthesis of enaminones directly from methyl ketones and amines with nitromethane as a carbon source. Chemical Communications, 2015, 51, 11108-11111.	4.1	67
39	Supported gold-catalyzed and ammonia-promoted selective synthesis of quinazolines in aqueous media. Organic Chemistry Frontiers, 2015, 2, 114-118.	4.5	38
40	Copper-Catalyzed Radical Methylation/Câ€"H Amination/Oxidation Cascade for the Synthesis of Quinazolinones. Journal of Organic Chemistry, 2015, 80, 4736-4742.	3.2	72
41	Highly Enantioselective Construction of Fluoroalkylated Quaternary Stereocenters via Organocatalytic Dehydrated Mannich Reaction of Unprotected Hemiaminals with Ketones. Organic Letters, 2015, 17, 5036-5039.	4.6	50
42	A simple and efficient approach to realize difunctionalization of arylketones with malonate esters via electrochemical oxidation. Chemical Communications, 2014, 50, 5034-5036.	4.1	61
43	An efficient synthesis of amides from alcohols and azides catalyzed by a bifunctional catalyst Au/DNA under mild conditions. Green Chemistry, 2014, 16, 2443.	9.0	31
44	Catalyst-free sulfonylation of activated alkenes for highly efficient synthesis of mono-substituted ethyl sulfones in water. Green Chemistry, 2014, 16, 4106.	9.0	79
45	Copper-Catalyzed Enantioselective Friedel–Crafts Alkylation of Pyrrole with Isatins. Organic Letters, 2014, 16, 3192-3195.	4.6	58
46	Electrochemical Synthesis of the Aryl αâ€Ketoesters from Acetophenones Mediated by KI. Chemistry - A European Journal, 2013, 19, 17711-17714.	3.3	66
47	A novel approach for the one-pot preparation of \hat{l} ±-ketoamides by anodic oxidation. Chemical Communications, 2013, 49, 8982.	4.1	127
48	Synthesis of Chromones through LiO <i>t</i> Bu/Airâ€Mediated Oxidation and Regioselective Cyclization of <i>o</i> â€Hydroxyphenyl Propargyl Carbinols. European Journal of Organic Chemistry, 2013, 2013, 2080-2083.	2.4	35
49	Highly active and selective synthesis of imines from alcohols and amines or nitroarenes catalyzed by Pd/DNA in water with dehydrogenation. Green Chemistry, 2012, 14, 3423.	9.0	97
50	Selective Iodine atalyzed Intermolecular Oxidative Amination of C(sp ³)H Bonds with <i>ortho</i> arbonyl‧ubstituted Anilines to Give Quinazolines. Angewandte Chemie - International Edition, 2012, 51, 8077-8081.	13.8	192
51	Oneâ€Pot Synthesis of 3,4â€Disubstituted Coumarins under Catalysis of Mn ₃ O ₄ Nanoparticles. European Journal of Organic Chemistry, 2012, 2012, 480-483.	2.4	23
52	Microwaveâ€Promoted, Solventâ€Free, Threeâ€Component Coupling of Aldehyde, Alkyne, and Amine Catalyzed by AgNO3. Synthetic Communications, 2007, 37, 849-858.	2.1	8
53	A Recyclable Electrochemical Allylation in Water. Organic Letters, 2005, 7, 1903-1905.	4.6	58
54	High regio- and stereoselective Barbier reaction of carbonyl compounds mediated by NaBF4/Zn (Sn) in waterElectronic supplementary information (ESI) available: spectral data of Barbier-type reaction products and quantum calculation results. See http://www.rsc.org/suppdata/nj/b3/b303187j/. New Journal of Chemistry, 2003, 27, 1297.	2.8	32

ZHENGGEN ZHA

#	Article	IF	CITATIONS
55	Efficient Barbier reaction of carbonyl compounds improved by a phase transfer catalyst in waterElectronic supplementary information (ESI) available: experimental procedure for allylation and spectral data for the allylation products. See http://www.rsc.org./suppdata/gc/b2/b206452a/. Green Chemistry, 2002, 4, 578-580.	9.0	24