List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4975097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Science of the Total Environment, 2012, 429, 2-35.	3.9	414
2	Rare Earth Elements in the Soil Environment. Current Pollution Reports, 2016, 2, 28-50.	3.1	230
3	Biosolids and heavy metals in soils. Scientia Agricola, 2003, 60, 793-806.	0.6	204
4	Transitions to sustainable management of phosphorus in Brazilian agriculture. Scientific Reports, 2018, 8, 2537.	1.6	172
5	Soil and foliar application of selenium in rice biofortification. Journal of Food Composition and Analysis, 2013, 31, 238-244.	1.9	156
6	A Career Perspective on Soil Management in the Cerrado Region of Brazil. Advances in Agronomy, 2016, 137, 1-72.	2.4	155
7	Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxicology and Environmental Safety, 2019, 172, 326-333.	2.9	143
8	Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant, Soil and Environment, 2010, 56, 584-588.	1.0	118
9	Removal of As(V) and Cr(VI) from aqueous solutions using solid waste from leather industry. Journal of Hazardous Materials, 2008, 151, 280-284.	6.5	110
10	Effects of arsenate, chromate, and sulfate on arsenic and chromium uptake and translocation by arsenic hyperaccumulator Pteris vittata L. Environmental Pollution, 2014, 184, 187-192.	3.7	101
11	Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts. Food Chemistry, 2014, 165, 578-586.	4.2	100
12	Assessing arsenic, cadmium, and lead contents in major crops in Brazil for food safety purposes. Journal of Food Composition and Analysis, 2015, 37, 143-150.	1.9	99
13	Seven potential sources of arsenic pollution in Latin America and their environmental and health impacts. Science of the Total Environment, 2021, 780, 146274.	3.9	97
14	Medical geology in the framework of the sustainable development goals. Science of the Total Environment, 2017, 581-582, 87-104.	3.9	90
15	Natural variation of selenium in Brazil nuts and soils from the Amazon region. Chemosphere, 2017, 188, 650-658.	4.2	90
16	Selenium biofortification of wheat grain via foliar application and its effect on plant metabolism. Journal of Food Composition and Analysis, 2019, 81, 10-18.	1.9	90
17	lodine biofortification of wheat, rice and maize through fertilizer strategy. Plant and Soil, 2017, 418, 319-335.	1.8	89
18	Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium. Journal of Hazardous Materials, 2007, 141, 344-347.	6.5	85

#	Article	IF	CITATIONS
19	Bioaccumulation and effects of lanthanum on growth and mitotic index in soybean plants. Ecotoxicology and Environmental Safety, 2015, 122, 136-144.	2.9	83
20	Selenium accumulation in lettuce germplasm. Planta, 2011, 233, 649-660.	1.6	82
21	Selenium promotes sulfur accumulation and plant growth in wheat (<i>Triticum aestivum</i>). Physiologia Plantarum, 2016, 158, 80-91.	2.6	82
22	Selenium protects rice plants from water deficit stress. Ecotoxicology and Environmental Safety, 2018, 164, 562-570.	2.9	82
23	A New Approach to Sampling Intact Fe Plaque Reveals Si-Induced Changes in Fe Mineral Composition and Shoot As in Rice. Environmental Science & amp; Technology, 2017, 51, 38-45.	4.6	76
24	Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. Journal of Hazardous Materials, 2009, 168, 479-483.	6.5	72
25	Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010-2020. Critical Reviews in Environmental Science and Technology, 2021, 51, 1727-1865.	6.6	70
26	Estoque de carbono e nitrogênio e formas de nitrogênio mineral em um solo submetido a diferentes sistemas de manejo. Pesquisa Agropecuaria Brasileira, 2004, 39, 179-186.	0.9	69
27	Cadmium binding mechanisms and adsorption capacity by novel phosphorus/magnesium-engineered biochars. Science of the Total Environment, 2019, 671, 1134-1143.	3.9	67
28	Selenium behavior in the soil environment and its implication for human health. Ciencia E Agrotecnologia, 2017, 41, 605-615.	1.5	66
29	Multiple linear regression and random forest to predict and map soil properties using data from portable X-ray fluorescence spectrometer (pXRF). Ciencia E Agrotecnologia, 2017, 41, 648-664.	1.5	65
30	Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. Journal of Hazardous Materials, 2013, 262, 1105-1115.	6.5	64
31	Simultaneous Biofortification of Rice With Zinc, Iodine, Iron and Selenium Through Foliar Treatment of a Micronutrient Cocktail in Five Countries. Frontiers in Plant Science, 2020, 11, 589835.	1.7	63
32	Atrazine sorption and fate in a Ultisol from humid tropical Brazil. Chemosphere, 2007, 67, 847-854.	4.2	58
33	The impact of redox conditions on the rare earth element signature of redoximorphic features in a soil sequence developed from limestone. Geoderma, 2012, 170, 25-38.	2.3	58
34	Combined impacts of Si-rich rice residues and flooding extent on grain As and Cd in rice. Environment International, 2019, 128, 301-309.	4.8	58
35	Tracing tropical soil parent material analysis via portable X-ray fluorescence (pXRF) spectrometry in Brazilian Cerrado. Geoderma, 2019, 337, 718-728.	2.3	58
36	Assessment of the Anticancer Compounds <i>Se</i> -Methylselenocysteine and Glucosinolates in Se-Biofortified Broccoli (Brassica oleracea L. var. <i>italica</i>) Sprouts and Florets. Journal of Agricultural and Food Chemistry, 2013, 61, 6216-6223.	2.4	57

#	Article	IF	CITATIONS
37	Portable X-ray fluorescence (pXRF) applications in tropical Soil Science. Ciencia E Agrotecnologia, 2017, 41, 245-254.	1.5	56
38	Soil weathering analysis using a portable X-ray fluorescence (PXRF) spectrometer in an Inceptisol from the Brazilian Cerrado. Applied Clay Science, 2018, 162, 27-37.	2.6	53
39	Proximal Sensing and Digital Terrain Models Applied to Digital Soil Mapping and Modeling of Brazilian Latosols (Oxisols). Remote Sensing, 2016, 8, 614.	1.8	52
40	Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach. Geoderma, 2020, 362, 114136.	2.3	52
41	Bacteria-Mediated Arsenic Oxidation and Reduction in the Growth Media of Arsenic Hyperaccumulator <i>Pteris vittata</i> . Environmental Science & Technology, 2012, 46, 11259-11266.	4.6	51
42	Zinc tolerance modulation in Myracrodruon urundeuva plants. Plant Physiology and Biochemistry, 2013, 67, 1-6.	2.8	51
43	Augmenting iron accumulation in cassava by the beneficial soil bacterium Bacillus subtilis (GBO3). Frontiers in Plant Science, 2015, 6, 596.	1.7	51
44	Evaluation of Genotypic Variation of Broccoli (<i>Brassica oleracea</i> var. <i>italic</i>) in Response to Selenium Treatment. Journal of Agricultural and Food Chemistry, 2011, 59, 3657-3665.	2.4	50
45	Hidden Nickel Deficiency? Nickel Fertilization via Soil Improves Nitrogen Metabolism and Grain Yield in Soybean Genotypes. Frontiers in Plant Science, 2018, 9, 614.	1.7	50
46	Phosphorus Improves Arsenic Phytoremediation by <i>Anadenanthera Peregrina</i> by Alleviating Induced Oxidative Stress. International Journal of Phytoremediation, 2013, 15, 633-646.	1.7	48
47	pXRF in tropical soils: Methodology, applications, achievements and challenges. Advances in Agronomy, 2021, , 1-62.	2.4	47
48	Elemental analysis of Cerrado agricultural soils via portable X-ray fluorescence spectrometry: Inferences for soil fertility assessment. Geoderma, 2019, 353, 264-272.	2.3	45
49	Baseline Concentration of Heavy Metals in Brazilian Latosols. Communications in Soil Science and Plant Analysis, 2003, 34, 547-557.	0.6	43
50	Assessing the Tolerance of Castor Bean to Cd and Pb for Phytoremediation Purposes. Biological Trace Element Research, 2012, 145, 93-100.	1.9	43
51	Increasing arsenic sorption on red mud by phosphogypsum addition. Journal of Hazardous Materials, 2013, 262, 1196-1203.	6.5	43
52	Rapid soil fertility prediction using X-ray fluorescence data and machine learning algorithms. Catena, 2021, 197, 105003.	2.2	42
53	Adsorption-desorption reactions of selenium (VI) in tropical cultivated and uncultivated soils under Cerrado biome. Chemosphere, 2016, 164, 271-277.	4.2	40
54	Soil subgroup prediction via portable X-ray fluorescence and visible near-infrared spectroscopy. Geoderma, 2020, 365, 114212.	2.3	40

#	Article	IF	CITATIONS
55	Regional-scale mapping for determining geochemical background values in soils of the Itacaiúnas River Basin, Brazil: The use of compositional data analysis (CoDA). Geoderma, 2020, 376, 114504.	2.3	39
56	Rare earth elements in raw materials and products of the phosphate fertilizer industry in South America: Content, signature, and crystalline phases. Journal of Geochemical Exploration, 2016, 168, 177-186.	1.5	38
57	Soil texture prediction using portable X-ray fluorescence spectrometry and visible near-infrared diffuse reflectance spectroscopy. Geoderma, 2020, 376, 114553.	2.3	38
58	Arsenic bioaccessibility in gold mine tailings of Delita, Cuba. Journal of Hazardous Materials, 2013, 262, 1004-1013.	6.5	37
59	Phytoprotective Effect of Arbuscular Mycorrhizal Fungi Species Against Arsenic Toxicity in Tropical Leguminous Species. International Journal of Phytoremediation, 2014, 16, 840-858.	1.7	36
60	Parent material distribution mapping from tropical soils data via machine learning and portable X-ray fluorescence (pXRF) spectrometry in Brazil. Geoderma, 2019, 354, 113885.	2.3	36
61	Agronomic biofortification of rice (Oryza sativa L.) with selenium and its effect on element distributions in biofortified grains. Plant and Soil, 2019, 444, 331-342.	1.8	36
62	Arsenic bioaccessibility in a gold mining area: a health risk assessment for children. Environmental Geochemistry and Health, 2012, 34, 457-465.	1.8	35
63	Tropical soils characterization at low cost and time using portable X-ray fluorescence spectrometer (pXRF): Effects of different sample preparation methods. Ciencia E Agrotecnologia, 2018, 42, 80-92.	1.5	35
64	Genotypic variation of zinc and selenium concentration in grains of Brazilian wheat lines. Plant Science, 2014, 224, 27-35.	1.7	34
65	Rare earth elements (REY) sorption on soils of contrasting mineralogy and texture. Environment International, 2019, 128, 279-291.	4.8	34
66	Selenato e selenito na produção e biofortificação agronômica com selênio em arroz. Pesquisa Agropecuaria Brasileira, 2012, 47, 831-837.	0.9	33
67	Anatomy and ultrastructure alterations of Leucaena leucocephala (Lam.) inoculated with mycorrhizal fungi in response to arsenic-contaminated soil. Journal of Hazardous Materials, 2013, 262, 1245-1258.	6.5	33
68	Portable X-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in Inceptisols under different land uses. Ciencia E Agrotecnologia, 2018, 42, 501-512.	1.5	32
69	Amending potential of organic and industrial by-products applied to heavy metal-rich mining soils. Ecotoxicology and Environmental Safety, 2018, 162, 581-590.	2.9	32
70	Impact of Redox Cycles on Manganese, Iron, Cobalt, and Lead in Nodules. Soil Science Society of America Journal, 2009, 73, 1231-1241.	1.2	31
71	Physiological and Physicochemical Responses of Potato to Selenium Biofortification in Tropical Soil. Potato Research, 2019, 62, 315-331.	1.2	31
72	Efeito do pH na adsorção e dessorção de cádmio em Latossolos brasileiros. Revista Brasileira De Ciencia Do Solo, 2005, 29, 523-532.	0.5	30

#	Article	IF	CITATIONS
73	Investigation of arsenic species in tailings and windblown dust from a gold mining area. Environmental Science and Pollution Research, 2016, 23, 638-647.	2.7	30
74	Advances in Tropical Soil Characterization via Portable X-Ray Fluorescence Spectrometry. Pedosphere, 2019, 29, 468-482.	2.1	30
75	Prediction of soil fertility via portable X-ray fluorescence (pXRF) spectrometry and soil texture in the Brazilian Coastal Plains. Geoderma, 2020, 357, 113960.	2.3	30
76	Determinação de cádmio, cobre, cromo, nÃquel, chumbo e zinco em fosfatos de rocha. Pesquisa Agropecuaria Brasileira, 2005, 40, 361-367.	0.9	29
77	Characterization and nutrient release from silicate rocks and influence on chemical changes in soil. Revista Brasileira De Ciencia Do Solo, 2012, 36, 951-962.	0.5	27
78	Nutrient accumulation and availability and crop yields following long-term application of pig slurry in a Brazilian Cerrado soil. Nutrient Cycling in Agroecosystems, 2015, 101, 259-269.	1.1	27
79	Agronomic biofortification of carrot with selenium. Ciencia E Agrotecnologia, 2018, 42, 138-147.	1.5	26
80	How does Ni fertilization affect a responsive soybean genotype? A dose study. Plant and Soil, 2019, 441, 567-586.	1.8	25
81	Lead sorption and leaching from an Inceptisol sample amended with sugarcane vinasse. Scientia Agricola, 2010, 67, 441-447.	0.6	24
82	Potential of different AM fungi (native from As-contaminated and uncontaminated soils) for supporting Leucaena leucocephala growth in As-contaminated soil. Environmental Pollution, 2017, 224, 125-135.	3.7	24
83	Zinc and selenium accumulation and their effect on iron bioavailability in common bean seeds. Plant Physiology and Biochemistry, 2017, 111, 193-202.	2.8	24
84	Ecological risk assessment of cerium for tropical agroecosystems. Chemosphere, 2019, 221, 124-131.	4.2	24
85	Geochemical mapping in stream sediments of the Carajás Mineral Province: Background values for the Itacaiúnas River watershed, Brazil. Applied Geochemistry, 2020, 118, 104608.	1.4	24
86	Frações oxidáveis do carbono orgânico de latossolo cultivado com cafeeiro em diferentes espaçamentos de plantio. Ciencia E Agrotecnologia, 2008, 32, 429-437.	1.5	24
87	Availability and Accumulation of Arsenic in Oilseeds Grown in Contaminated Soils. Water, Air, and Soil Pollution, 2012, 223, 233-240.	1.1	23
88	Chromate and phosphate inhibited each other's uptake and translocation in arsenic hyperaccumulator Pteris vittata L Environmental Pollution, 2015, 197, 240-246.	3.7	23
89	Binding intensity and metal partitioning in soils affected by mining and smelting activities in Minas Gerais, Brazil. Environmental Science and Pollution Research, 2015, 22, 13442-13452.	2.7	23
90	Critical mercury concentration in tropical soils: Impact on plants and soil biological attributes. Science of the Total Environment, 2019, 666, 472-479.	3.9	23

#	Article	IF	CITATIONS
91	Production of engineered-biochar under different pyrolysis conditions for phosphorus removal from aqueous solution. Science of the Total Environment, 2022, 816, 151559.	3.9	23
92	The Influence of Soil Moisture on Oxide Determination in Tropical Soils via Portable Xâ€ray Fluorescence. Soil Science Society of America Journal, 2018, 82, 632-644.	1.2	22
93	Modeling arsenic content in Brazilian soils: What is relevant?. Science of the Total Environment, 2020, 712, 136511.	3.9	22
94	Teor e capacidade máxima de adsorção de arsênio em Latossolos brasileiros. Revista Brasileira De Ciencia Do Solo, 2007, 31, 1311-1318.	0.5	21
95	Retenção e dessorção competitivas de ânions inorgânicos em gibbsita natural de solo. Pesquisa Agropecuaria Brasileira, 2007, 42, 1627-1633.	0.9	21
96	Evaluation of germplasm effect on Fe, Zn and Se content in wheat seedlings. Plant Science, 2013, 210, 206-213.	1.7	21
97	Gomphrena claussenii, the first South-American metallophyte species with indicator-like Zn and Cd accumulation and extreme metal tolerance. Frontiers in Plant Science, 2013, 4, 180.	1.7	21
98	Genotypic Variation and Biofortification with Selenium in Brazilian Wheat Cultivars. Journal of Environmental Quality, 2018, 47, 1371-1379.	1.0	21
99	Assessing models for prediction of some soil chemical properties from portable X-ray fluorescence (pXRF) spectrometry data in Brazilian Coastal Plains. Geoderma, 2020, 357, 113957.	2.3	21
100	Cadmium in potato and soybeans: Do phosphate fertilization and soil management systems play a role?. Journal of Food Composition and Analysis, 2012, 27, 32-37.	1.9	20
101	EFFECT OF ALTERNATIVE MULTINUTRIENT SOURCES ON SOIL CHEMICAL PROPERTIES. Revista Brasileira De Ciencia Do Solo, 2015, 39, 194-204.	0.5	20
102	Investigating arsenic toxicity in tropical soils: A cell cycle and DNA fragmentation approach. Science of the Total Environment, 2020, 698, 134272.	3.9	20
103	Kinetics of K release from soils of Brazilian coffee regions: effect of organic acids. Revista Brasileira De Ciencia Do Solo, 2008, 32, 533-540.	0.5	19
104	Environmental behavior of arsenic(III) and (V) in soils. Journal of Environmental Monitoring, 2009, 11, 1412.	2.1	19
105	Propriedades de solos sob vegetação nativa em Minas Gerais: distribuição por fitofisionomia, hidrografia e variabilidade espacial. Revista Brasileira De Ciencia Do Solo, 2012, 36, 11-22.	0.5	19
106	Assessment of Trace Element Contents in Soils and Water from Cerrado Wetlands, Triângulo Mineiro Region. Revista Brasileira De Ciencia Do Solo, 0, 43, .	0.5	19
107	Cerium alleviates drought-induced stress in Phaseolus vulgaris. Journal of Rare Earths, 2020, 38, 324-331.	2.5	19
108	Comportamento sortivo, individual e competitivo, de metais pesados em Latossolos com mineralogia contrastante. Revista Brasileira De Ciencia Do Solo, 2007, 31, 819-826	0.5	19

#	Article	IF	CITATIONS
109	Proximal sensor data fusion and auxiliary information for tropical soil property prediction: Soil texture. Geoderma, 2022, 422, 115936.	2.3	19
110	Competitive Sorption of Arsenate and Phosphate on Aluminum Mining By-product. Water, Air, and Soil Pollution, 2012, 223, 5433-5444.	1.1	18
111	Arsenic ecotoxicology: The interface between geosphere, hydrosphere and biosphere. Journal of Hazardous Materials, 2013, 262, 883-886.	6.5	18
112	Soils of the Brazilian Coastal Plains biome: prediction of chemical attributes via portable X-ray fluorescence (pXRF) spectrometry and robust prediction models. Soil Research, 2020, 58, 683.	0.6	18
113	Foliar Elemental Analysis of Brazilian Crops via Portable X-ray Fluorescence Spectrometry. Sensors, 2020, 20, 2509.	2.1	18
114	Rare earth elements (REEs): geochemical patterns and contamination aspects in Brazilian benchmark soils. Environmental Pollution, 2021, 289, 117972.	3.7	18
115	Efeito da força iônica da solução de equilÃbrio sobre a adsorção/dessorção de chumbo em Latossolos brasileiros. Pesquisa Agropecuaria Brasileira, 2001, 36, 1077-1084.	0.9	17
116	Efeito da força iônica da solução de equilÃbrio na adsorção de cádmio em Latossolos brasileiros. Pesquisa Agropecuaria Brasileira, 2003, 38, 737-745.	0.9	17
117	Adsorção e dessorção de cádmio, cobre e chumbo por amostras de Latossolos pré-tratadas com fósforo. Revista Brasileira De Ciencia Do Solo, 2004, 28, 377-384.	0.5	17
118	Sorção de selênio em solos do bioma cerrado. Revista Brasileira De Ciencia Do Solo, 2011, 35, 1995-2003.	0.5	17
119	Leguminous plants nodulated by selected strains of Cupriavidus necator grow in heavy metal contaminated soils amended with calcium silicate. World Journal of Microbiology and Biotechnology, 2013, 29, 2055-2066.	1.7	17
120	Tropical Soil Toposequence Characterization via pXRF Spectrometry. Soil Science Society of America Journal, 2019, 83, 1153-1166.	1.2	17
121	Natural variation of arsenic fractions in soils of the Brazilian Amazon. Science of the Total Environment, 2019, 687, 1219-1231.	3.9	17
122	Anatomical and physiological characteristics of Raphanus sativus L. submitted to different selenium sources and forms application. Scientia Horticulturae, 2020, 260, 108839.	1.7	17
123	Organic matter composition and paleoclimatic changes in tropical mountain peatlands currently under grasslands and forest clusters. Catena, 2019, 180, 69-82.	2.2	16
124	Tropical soil pH and sorption complex prediction via portable X-ray fluorescence spectrometry. Geoderma, 2020, 361, 114132.	2.3	16
125	Hydroxyl-eggshell: A novel eggshell byproduct highly effective to recover phosphorus from aqueous solutions. Journal of Cleaner Production, 2020, 274, 123042.	4.6	16
126	Comparison of portable X-ray fluorescence spectrometry and laboratory-based methods to assess the soil elemental composition: Applications for wetland soils. Environmental Technology and Innovation, 2020, 19, 100826.	3.0	16

#	Article	IF	CITATIONS
127	Selenium application influenced selenium biofortification and physiological traits in water-deficit common bean plants. Crop and Pasture Science, 2022, 73, 44-55.	0.7	16
128	Common bean growth and health promoted by rhizobacteria and the contribution of magnesium to the observed responses. Applied Soil Ecology, 2015, 87, 49-55.	2.1	15
129	Tolerance and potential for bioaccumulation of Alternanthera tenella Colla to cadmium under in vitro conditions. Plant Cell, Tissue and Organ Culture, 2017, 130, 507-519.	1.2	15
130	Cerium (Ce) and Lanthanum (La) promoted plant growth and mycorrhizal colonization of maize in tropical soil. Australian Journal of Crop Science, 2018, 12, 704-710.	0.1	15
131	Synthesis of proximal sensing, terrain analysis, and parent material information for available micronutrient prediction in tropical soils. Precision Agriculture, 2019, 20, 746-766.	3.1	15
132	Adsorção e dessorção aniônicas individuais por gibbsita pedogenética. Quimica Nova, 2009, 32, 99-105.	0.3	15
133	Caracterização de subproduto da indústria de alumÃnio e seu uso na retenção de cádmio e chumbo em sistemas monoelementares. Quimica Nova, 2009, 32, 868-874.	0.3	14
134	Effect of Equilibrium Solution Ionic Strength on the Adsorption of Zn, Cu, Cd, Pb, As, and P on Aluminum Mining By-Product. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	14
135	Beneficial use of a by-product from the phosphate fertilizer industry in tropical soils: effects on soil properties and maize and soybean growth. Journal of Cleaner Production, 2016, 112, 113-120.	4.6	14
136	Beneficial use of Ni-rich petroleum coke ashes: Product characterization and effects on soil properties and plant growth. Journal of Cleaner Production, 2018, 198, 785-796.	4.6	14
137	Subproduto da indústria de alumÃnio como amenizante de solos contaminados com cádmio e chumbo. Revista Brasileira De Ciencia Do Solo, 2008, 32, 2533-2546.	0.5	14
138	Organic acids in the rhizosphere and phytoavailability of sewage sludge-borne trace elements. Pesquisa Agropecuaria Brasileira, 2007, 42, 917-924.	0.9	14
139	Response of brachiaria grass to selenium forms applied in a tropical soil. Plant, Soil and Environment, 2012, 58, 521-527.	1.0	13
140	Determination of zinc in rice grains using DTZ staining and ImageJ software. Journal of Cereal Science, 2016, 68, 53-58.	1.8	13
141	Lanthanum content and effects on growth, gas exchanges, and chlorophyll index in maize plants. Acta Scientiarum - Biological Sciences, 2018, 40, 38469.	0.3	13
142	Proximal sensing applied to soil texture prediction and mapping in Brazil. Geoderma Regional, 2020, 23, e00321.	0.9	13
143	Chemical, physical, and biological attributes in soils affected by deposition of iron ore tailings from the Fundţo Dam failure. Environmental Monitoring and Assessment, 2021, 193, 462.	1.3	13
144	Modeling and prediction of sulfuric acid digestion analyses data from PXRF spectrometry in tropical soils. Scientia Agricola, 2020, 77, .	0.6	13

9

#	Article	IF	CITATIONS
145	Selenium biofortification via soil and its effect on plant metabolism and mineral content of sorghum plants. Journal of Food Composition and Analysis, 2022, 109, 104505.	1.9	13
146	Adsorção de fÃ3sforo em solos de várzea do estado de Minas Gerais. Revista Brasileira De Ciencia Do Solo, 2000, 24, 27-34.	0.5	12
147	Changes in Isoelectric Point as Affected by Anion Adsorption on Two Brazilian Oxisols. Communications in Soil Science and Plant Analysis, 2006, 37, 1357-1366.	0.6	12
148	Fitorremediação de solos contaminados com arsênio (As) utilizando braquiária. Ciencia E Agrotecnologia, 2011, 35, 84-91.	1.5	12
149	Beneficial use of industrial by-products for phytoremediation of an arsenic-rich soil from a gold mining area. International Journal of Phytoremediation, 2016, 18, 777-784.	1.7	12
150	Soil management and ionic strength on selenite retention in oxidic soils. Ciencia E Agrotecnologia, 2018, 42, 395-407.	1.5	12
151	Biofortification with selenium and implications in the absorption of macronutrients in Raphanus sativus L Journal of Food Composition and Analysis, 2020, 86, 103382.	1.9	12
152	Strategies for applying selenium for biofortification of rice in tropical soils and their effect on element accumulation and distribution in grains. Journal of Cereal Science, 2020, 96, 103125.	1.8	12
153	Selenato e selenito na produção, nutrição mineral e biofortificação com selênio em cultivares de alface¹. Revista Brasileira De Ciencia Do Solo, 2011, 35, 1347-1355.	0.5	12
154	Movimentação de nitrato e amônio em colunas de solo. Ciencia E Agrotecnologia, 2004, 28, 537-541.	1.5	12
155	Selenium desorption in tropical soils by sulfate and phosphate, and selenium biofortification of Mombaça grass under increasing rates of phosphate fertilisation. Crop and Pasture Science, 2022, 73, 56-66.	0.7	12
156	Heavy metals extractability in a soil amended with sewage sludge. Scientia Agricola, 2009, 66, 643-649.	0.6	11
157	Conditions affecting oxide quantification in unknown tropical soils via handheld X-ray fluorescence spectrometer. Soil Research, 2018, 56, 648.	0.6	11
158	Adsorption of Selenite in Tropical Soils as Affected by Soil Management, Ionic Strength, and Soil Properties. Journal of Soil Science and Plant Nutrition, 2020, 20, 139-148.	1.7	11
159	Tropical soil order and suborder prediction combining optical and X-ray approaches. Geoderma Regional, 2020, 23, e00331.	0.9	11
160	Biochemical basis of differential selenium tolerance in arugula (Eruca sativa Mill.) and lettuce (Lactuca sativa L.). Plant Physiology and Biochemistry, 2020, 157, 328-338.	2.8	11
161	Combining zinc desorption with EXAFS speciation analysis to understand Zn mobility in mining and smelting affected soils in Minas Gerais, Brazil. Science of the Total Environment, 2021, 754, 142450.	3.9	11
162	Uso da cromatografia de exclusão por tamanho na caracterização de substâncias húmicas de Latossolo Vermelho-Escuro sob efeito da calagem. Revista Brasileira De Ciencia Do Solo, 2000, 24, 495-503.	0.5	11

#	Article	IF	CITATIONS
163	Micorriza arbuscular e nutrição fosfática na toxidez de zinco para a trema [Trema micrantha (L.) Blum.]. Revista Brasileira De Ciencia Do Solo, 2006, 30, 665-675.	0.5	11
164	Agronomic efficiency of potassium fertilization in lettuce fertilized with alternative nutrient sources. Revista Ciencia Agronomica, 2013, 44, 267-277.	0.1	11
165	Teores de arsênio e cádmio em solos do bioma cerrado. Revista Brasileira De Ciencia Do Solo, 2013, 37, 281-286.	0.5	10
166	Interactions of cadmium and zinc in high zinc tolerant native species Andropogon gayanus cultivated in hydroponics: growth endpoints, metal bioaccumulation, and ultrastructural analysis. Environmental Science and Pollution Research, 2020, 27, 45513-45526.	2.7	10
167	Assessment of iron-rich tailings via portable X-ray fluorescence spectrometry: the Mariana dam disaster, southeast Brazil. Environmental Monitoring and Assessment, 2021, 193, 203.	1.3	10
168	Hydrothermally-altered feldspar as an environmentally-friendly technology to promote heavy metals immobilization: Batch studies and application in smelting-affected soils. Journal of Environmental Management, 2021, 291, 112711.	3.8	10
169	Fast and effective arsenic removal from aqueous solutions by a novel low-cost eggshell byproduct. Science of the Total Environment, 2021, 783, 147022.	3.9	10
170	Micronutrients prediction via pXRF spectrometry in Brazil: Influence of weathering degree. Geoderma Regional, 2021, 27, e00431.	0.9	10
171	Proximal sensor data fusion for tropical soil property prediction: Soil fertility properties. Journal of South American Earth Sciences, 2022, 116, 103873.	0.6	10
172	Acúmulo DE Cu, Mn, Ni, Pb E Zn em latossolo vermelho adubado com fontes de lodo de esgoto e cultivado com milho. Ciencia E Agrotecnologia, 2004, 28, 15-23.	1.5	9
173	Assessing the Brazilian prevention value for soil arsenic: Effects on emergence and growth of plant species relevant to tropical agroecosystems. Science of the Total Environment, 2019, 694, 133663.	3.9	9
174	Prediction of soil nutrient content via pXRF spectrometry and its spatial variation in a highly variable tropical area. Precision Agriculture, 2022, 23, 18-34.	3.1	9
175	Hydrothermally-altered feldspar reduces metal toxicity and promotes plant growth in highly metal-contaminated soils. Chemosphere, 2022, 286, 131768.	4.2	9
176	Espécies tropicais de pteridófitas em associação com fungos micorrÃzicos arbusculares em solo contaminado com arsênio. Quimica Nova, 2012, 35, 709-714.	0.3	9
177	On the Role of Iodine in Plants: A Commentary on Benefits of This Element. Frontiers in Plant Science, 2022, 13, 836835.	1.7	9
178	Nutrição fosfática e micorriza arbuscular na redução da toxicidade de cádmio em trema [Trema micrantha (L.) Blum.]. Revista Arvore, 2007, 31, 783-792.	0.5	8
179	Bioaccessibility of Cd and Pb in tailings from a zinc smelting in Brazil: implications for human health. Environmental Geochemistry and Health, 2016, 38, 1083-1096.	1.8	8
180	Evaluation of mercury phytoavailability in Oxisols. Environmental Science and Pollution Research, 2019, 26, 483-491.	2.7	8

#	Article	IF	CITATIONS
181	Soil parent material prediction for Brazil via proximal soil sensing. Geoderma Regional, 2020, 22, e00310.	0.9	8
182	Comparison of bioaccessibility methods in spiked and field Hg-contaminated soils. Chemosphere, 2020, 254, 126904.	4.2	8
183	Elemental analysis of biochar-based fertilizers via portable X-ray fluorescence spectrometry. Environmental Technology and Innovation, 2021, 23, 101788.	3.0	8
184	Copper Sorption Kinetics and Sorption Hysteresis in Two Oxide-Rich Soils (Oxisols): Effect of Phosphate Pretreatment. , 1998, , 209-228.		8
185	Mercury fractionation in tropical soils: A critical point of view. Chemosphere, 2020, 257, 127114.	4.2	8
186	Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry. Ciencia E Agrotecnologia, 0, 44, .	1.5	8
187	Mono- and Multielement Sorption of Trace Metals on Oxidic Industrial By-products. Water, Air, and Soil Pollution, 2012, 223, 1661-1670.	1.1	7
188	Organic Matter Removal on Oxide Determination in Oxisols Via Portable X-ray Fluorescence. Communications in Soil Science and Plant Analysis, 2019, 50, 673-681.	0.6	7
189	Dissolution techniques for determination of rare earth elements in phosphate products: Acid digestion or alkaline fusion?. Journal of Geochemical Exploration, 2019, 197, 114-121.	1.5	7
190	Solubilização de potássio em misturas de verdete e calcário tratadas termoquimicamente. Pesquisa Agropecuaria Tropical, 2015, 45, 66-72.	1.0	7
191	Força iônica da solução de equilÃbrio na adsorção de arsênio em latossolos brasileiros. Pesquisa Agropecuaria Brasileira, 2006, 41, 457-460.	0.9	7
192	Environmental and human-health risks of As in soils with abnormal arsenic levels located in irrigated agricultural areas of Paracatu (MG), Brazil. Ecotoxicology and Environmental Safety, 2021, 226, 112869.	2.9	7
193	Soil amendments affect the potential of Gomphrena claussenii for phytoremediation of a Zn- and Cd-contaminated soil. Chemosphere, 2022, 288, 132508.	4.2	7
194	Pocket-sized sensor for controlled, quantitative and instantaneous color acquisition of plant leaves. Journal of Plant Physiology, 2022, 272, 153686.	1.6	7
195	Sulfate availability and soil selenate adsorption alleviate selenium toxicity in rice plants. Environmental and Experimental Botany, 2022, 201, 104971.	2.0	7
196	Replication of an ivg protocol to estimate bioaccessible arsenic in materials from a gold mining area in Brazil. Revista Brasileira De Ciencia Do Solo, 2012, 36, 1355-1360.	0.5	6
197	Influence of sulfur on selenium absorption in strawberry. Acta Scientiarum - Agronomy, 2018, 40, 35780.	0.6	6
198	Elemental concentration via portable x-ray fluorescence spectrometry: Assessing the impact of water content. Ciencia E Agrotecnologia, 0, 43, .	1.5	6

#	Article	IF	CITATIONS
199	Bioavailability of copper and nickel in naturally metal-enriched soils of Carajás Mining Province, Eastern Amazon, Brazil. Environmental Monitoring and Assessment, 2021, 193, 256.	1.3	6
200	Prediction of soil organic matter content by combining data from Nix ProTM color sensor and portable X-ray fluorescence spectrometry in tropical soils. Geoderma Regional, 2022, 28, e00461.	0.9	6
201	Unraveling the accumulation and localization of selenium and barium in Brazil nuts using spectroanalytical techniques. Journal of Food Composition and Analysis, 2022, 106, 104329.	1.9	6
202	Adsorption/Desorption of Organic Anions in Brazilian Oxisols. Communications in Soil Science and Plant Analysis, 2006, 37, 1367-1379.	0.6	5
203	Teor de arsênio e adsorção competitiva arsênio/fosfato e arsênio/sulfato em solos de Minas Gerais, Brasil. Ciencia Rural, 2013, 43, 985-991.	0.3	5
204	Trace elements in soils developed from metamorphic ultrabasic rocks in Minas Gerais, Brazil. Geoderma Regional, 2020, 21, e00279.	0.9	5
205	Sorption of Cadmium, Lead, Arsenate, and Phosphate on Red Mud Combined with Phosphogypsum. International Journal of Environmental Research, 2021, 15, 427-444.	1.1	5
206	Short-term nickel residual effect in field-grown soybeans: nickel-enriched soil acidity amendments promote plant growth and safe soil nickel levels. Archives of Agronomy and Soil Science, 2022, 68, 1586-1600.	1.3	5
207	Proximal sensor-enhanced soil mapping in complex soil-landscape areas of Brazil. Pedosphere, 2021, 31, 615-626.	2.1	5
208	Genotypic variation of agronomic traits as well as concentrations of Fe, Zn, P and phytate in soybean cultivars. Revista Ceres, 2016, 63, 403-411.	0.1	5
209	How sulfate content and soil depth affect the adsorption/desorption of selenate and selenite in tropical soils?. Revista Brasileira De Ciencia Do Solo, 2020, 44, .	0.5	5
210	Foliar analysis via portable X-ray fluorescence spectrometry: Experimental considerations. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 186, 106320.	1.5	5
211	Geochemistry of selenium, barium, and iodine in representative soils of the Brazilian Amazon rainforest. Science of the Total Environment, 2022, 828, 154426.	3.9	5
212	Geochemical Background for Potentially Toxic Elements in Forested Soils of the State of ParÃ _i , Brazilian Amazon. Minerals (Basel, Switzerland), 2022, 12, 674.	0.8	5
213	Persistência biologica de ametryn, diuron e oxyfluorfen no solo. Ciencia E Agrotecnologia, 2005, 29, 980-987.	1.5	4
214	Indicadores quÃmicos de qualidade da matéria orgânica de solo da sub-bacia do Rio das Mortes sob manejos diferenciais de cafeeiro. Quimica Nova, 2008, 31, 1733-1737.	0.3	4
215	Atrazine in a corn cultivated area and its relation with the landscape position. Ciencia E Agrotecnologia, 2013, 37, 389-396.	1.5	4
216	Potential of cassava clones enriched with β arotene and lycopene for zinc biofortification under different soil Zn conditions. Journal of the Science of Food and Agriculture, 2019, 99, 666-674.	1.7	4

LUIZ R G GUILHERME

#	Article	IF	CITATIONS
217	Phosphorus and sulfur in a tropical soil and their effects on growth and selenium accumulation in Leucaena leucocephala (Lam.) de Wit. Environmental Science and Pollution Research, 2020, 27, 44060-44072.	2.7	4
218	Lead acetate ecotoxicity in tropical soils. Ecotoxicology, 2021, 30, 1029-1042.	1.1	4
219	Copper phytotoxicity in agricultural crops cultivated in tropical soils. Semina:Ciencias Agrarias, 2020, 41, 2883-2898.	0.1	4
220	Phytoremediation of Arsenic-Contaminated Soils Amended with Red Mud Combined with Phosphogypsum. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	4
221	Kasugamycin influence on bacterial blight of coffee and on green coffee beans physicochemical quality. Coffee Science, 2018, 13, 98.	0.5	4
222	Soil-sediment linkage and trace element contamination in forested/deforested areas of the Itacaiúnas River Watershed, Brazil: To what extent land-use change plays a role?. Science of the Total Environment, 2022, 828, 154327.	3.9	4
223	X-ray microanalytical studies of mineral elements in the tripartite symbiosis between lima bean, N2-fixing bacteria and mycorrhizal fungi. Journal of Microbiological Methods, 2017, 132, 14-20.	0.7	3
224	Synergy between cadmium and zinc in bean plants cultivated in multi contaminated soils. Acta Scientiarum - Agronomy, 2018, 41, 35829.	0.6	3
225	Inï¬,uence of the Edge Effect on a Soil Seed Bank of a Natural Fragment in the Atlantic Forest. Iheringia - Serie Botanica, 2017, 72, 247-253.	0.0	3
226	Solubility and availability of micronutrients extracted from silicate agrominerals. Pesquisa Agropecuaria Brasileira, 0, 55, .	0.9	3
227	Modelagem não linear da extração de zinco de um solo tratado com lodo de esgoto. Acta Scientiarum - Technology, 2010, 32, .	0.4	2
228	Challenges and opportunities for a sustainable agriculture in Brazil. Acta Horticulturae, 2018, , 1-6.	0.1	2
229	Artificial Neural Networks To Distinguish Charcoal from <i>Eucalyptus</i> and Native Forests Based on Their Mineral Components. Energy & Fuels, 2020, 34, 9599-9608.	2.5	2
230	Physiological effects of mercury-contaminated Oxisols on common bean and oat. Environmental Science and Pollution Research, 2021, 28, 11279-11288.	2.7	2
231	Comparing the sorptive affinity of an aluminum-mining by-product for cationic and anionic pollutants. International Journal of Environmental Science and Technology, 2021, 18, 1237-1252.	1.8	2
232	X-ray fluorescence spectrometry applied to digital mapping of soil fertility attributes in tropical region with elevated spatial variability. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20200646.	0.3	2
233	Rare Earth Elements (REEs) Rich-Phosphate Fertilizers Used in Brazil are More Effective in Increasing Legume Crops Yield Than Their REEs-Poor Counterparts. International Journal of Plant Production, 2021, 15, 1-11.	1.0	2
234	The effect of a fungicide treatment on the physiological potential of rice seeds after storage. CientÃfica, 2016, 44, 239.	0.1	2

#	Article	IF	CITATIONS
235	Plant availability of trace elements in sewage sludge-treated soils: methodologyÂ1. Revista Brasileira De Ciencia Do Solo, 2011, 35, 1453-1460.	0.5	2
236	Macronutrients content of radishes and the influence of biofortification with selenium. Scientia Horticulturae, 2022, 296, 110908.	1.7	2
237	Chemical and mineralogical changes in the textural fractions of quartzite-derived tropical soils, along weathering, assessed by portable X-ray fluorescence spectrometry and X-ray diffraction. Journal of South American Earth Sciences, 2021, 112, 103634.	0.6	2
238	Assessing the most sensitive and reliable endpoints in plant growth tests to improve arsenic risk assessment. Science of the Total Environment, 2020, 708, 134753.	3.9	1
239	FOLIAR FEEDING WITH ZINC AS A BIOFORTIFICATION STRATEGY IN MAIZE. Revista Brasileira De Milho E Sorgo, 2019, 18, 281-289.	0.2	1
240	Heavy Metals in P Fertilizers Marketed in Brazil: Is This a Concern in Our Agroecosystems?. SSRN Electronic Journal, 0, , .	0.4	1
241	Erratum on: Gomphrena claussenii, the first South American metallophyte species with indicator-like Zn and Cd accumulation and extreme metal tolerance. Frontiers in Plant Science, 2014, 5, .	1.7	0
242	ELEMENTOS-TRAÇO EM ÃREAS DE VEGETAÇÃO NATIVA E AGRICULTURA INTENSIVA DO ESTADO DE MATO GROSSO DETERMINADOS POR FLUORESCÊNCIA DE RAIOS-X POR REFLEXÃO TOTAL. Revista Brasileira De Ciencia Do Solo, 2015, 39, 1048-1057.	0.5	0
243	Differences in the soil seed bank of a mining area and its surroundings: a case study inserted in the Cerrado domain. Iheringia - Serie Botanica, 2021, 76, e2021014-e2021014.	0.0	0
244	Agronomic and environmental implications of using a By-Product of the Intermediate Tanning Processes as Nitrogen Fertilizer. Scientia Agricola, 2017, 74, 250-257.	0.6	0
245	Selenium biofortification in grain crops in Brazil. , 2019, , 109-110.		0
246	Using proximal sensors to assess pedogenetic development of Inceptisols and Oxisols in Brazil. Geoderma Regional, 2022, 28, e00465.	0.9	0