

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4975030/publications.pdf Version: 2024-02-01

XIAN LI

#	Article	IF	CITATIONS
1	Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature, 2015, 524, 335-338.	13.7	1,185
2	Determination of Physical Properties for the Binary System of 1-Ethyl-3-methylimidazolium Tetrafluoroborate + H2O. Journal of Chemical & Engineering Data, 2004, 49, 760-764.	1.0	215
3	Kinetic study of biomass pellet pyrolysis by using distributed activation energy model and Coats Redfern methods and their comparison. Bioresource Technology, 2019, 294, 122099.	4.8	115
4	Alkaliâ€Doped Lithium Orthosilicate Sorbents for Carbon Dioxide Capture. ChemSusChem, 2016, 9, 2480-2487.	3.6	71
5	Kinetic analyses and synergistic effects of CO2 co-gasification of low sulphur petroleum coke and biomass wastes. Bioresource Technology, 2018, 267, 54-62.	4.8	65
6	A gas-pressurized torrefaction method for biomass wastes. Energy Conversion and Management, 2018, 173, 29-36.	4.4	65
7	Mineral Transformation in Char and Its Effect on Coal Char Gasification Reactivity at High Temperatures, Part 1: Mineral Transformation in Char. Energy & Fuels, 2013, 27, 4545-4554.	2.5	63
8	Viscosity-temperature property of coal ash slag at the condition of entrained flow gasification: A review. Fuel Processing Technology, 2021, 215, 106751.	3.7	63
9	Correlations between the physicochemical properties of hydrochar and specific components of waste lettuce: Influence of moisture, carbohydrates, proteins and lipids. Bioresource Technology, 2019, 272, 482-488.	4.8	57
10	Preparation of Novel Li ₄ SiO ₄ Sorbents with Superior Performance at Low CO ₂ Concentration. ChemSusChem, 2016, 9, 1607-1613.	3.6	55
11	Pyrolysis kinetics of biomasses pretreated by gas-pressurized torrefaction. Energy Conversion and Management, 2019, 182, 117-125.	4.4	52
12	Transformations and Roles of Sodium Species with Different Occurrence Modes in Direct Liquefaction of Zhundong Coal from Xinjiang, Northwestern China. Energy & Fuels, 2015, 29, 5633-5639.	2.5	47
13	Effects of atmosphere on the oxidation state of iron and viscosity behavior of coal ash slag. Fuel, 2019, 243, 41-51.	3.4	47
14	Effect of chemical composition on the fusion behaviour of synthetic high-iron coal ash. Fuel, 2019, 253, 1465-1472.	3.4	46
15	The internal and external factor on coal ash slag viscosity at high temperatures, Part 2: Effect of residual carbon on slag viscosity. Fuel, 2015, 158, 976-982.	3.4	45
16	Combustion kinetics and mechanism of biomass pellet. Energy, 2020, 205, 117909.	4.5	45
17	Preparation of High-Grade Carbonaceous Materials Having Similar Chemical and Physical Properties from Various Low-Rank Coals by Degradative Solvent Extraction. Energy & Fuels, 2012, 26, 6897-6904.	2.5	42
18	Na&Ca removal from Zhundong coal by a novel CO2-water leaching method and the ashing behavior of the leached coal. Fuel, 2017, 210, 8-14.	3.4	40

#	Article	IF	CITATIONS
19	Novel carbon-rich additives preparation by degradative solvent extraction of biomass wastes for coke-making. Bioresource Technology, 2016, 207, 85-91.	4.8	39
20	The formation of planar crystalline flocs of γ-FeOOH in Fe(II) coagulation and the influence of humic acid. Water Research, 2020, 185, 116250.	5.3	38
21	Effects of Mineral Matter and Coal Blending on Gasification. Energy & amp; Fuels, 2011, 25, 1127-1131.	2.5	36
22	Effect of V and Ni on Ash Fusion Temperatures. Energy & Fuels, 2013, 27, 7303-7313.	2.5	35
23	Modeling Study of Selenium Migration Behavior in Wet Flue Gas Desulfurization Spray Towers. Environmental Science & Technology, 2020, 54, 16128-16137.	4.6	34
24	Two-Stage Conversion of Low-Rank Coal or Biomass into Liquid Fuel under Mild Conditions. Energy & Fuels, 2015, 29, 3127-3133.	2.5	33
25	Mechanism study of degradative solvent extraction of biomass. Fuel, 2016, 165, 10-18.	3.4	31
26	Kinetics, thermodynamics and synergistic effects analyses of petroleum coke and biomass wastes during H2O co-gasification. International Journal of Hydrogen Energy, 2020, 45, 24502-24517.	3.8	31
27	Effect of Pressurized Torrefaction Pretreatments on Biomass CO ₂ Gasification. Energy & Fuels, 2015, 29, 7309-7316.	2.5	29
28	Correlation between the Combustion Behavior of Brown Coal Char and Its Aromaticity and Pore Structure. Energy & Fuels, 2016, 30, 3419-3427.	2.5	29
29	Gas-pressurized torrefaction of biomass wastes: Roles of pressure and secondary reactions. Bioresource Technology, 2020, 313, 123640.	4.8	29
30	Correlation between Char Gasification Characteristics at Different Stages and Microstructure of Char by Combining X-ray Diffraction and Raman Spectroscopy. Energy & Fuels, 2020, 34, 4162-4172.	2.5	29
31	Conversion of Biomass into High-Quality Bio-oils by Degradative Solvent Extraction Combined with Subsequent Pyrolysis. Energy & Fuels, 2017, 31, 3987-3994.	2.5	28
32	Selenium migration behaviors in wet flue gas desulfurization slurry and an in-situ treatment approach. Chemical Engineering Journal, 2020, 385, 123891.	6.6	28
33	Gas-pressurized torrefaction of biomass wastes: The optimization of pressurization condition and the pyrolysis of torrefied biomass. Bioresource Technology, 2021, 319, 124216.	4.8	27
34	The role of residual char on ash flow behavior, Part 1: The effect of graphitization degree of residual char on ash fusibility. Fuel, 2018, 234, 1173-1180.	3.4	26
35	Gas-pressurized torrefaction of biomass wastes: Co-gasification of gas-pressurized torrefied biomass with coal. Bioresource Technology, 2021, 321, 124505.	4.8	26
36	Novel findings in conversion mechanism of toluene as model compound of biomass waste tar in molten salt. Journal of Analytical and Applied Pyrolysis, 2018, 134, 274-280.	2.6	25

#	Article	IF	CITATIONS
37	The role of residual char on ash flow behavior, Part 2: Effect of SiO2/Al2O3 on ash fusibility and carbothermal reaction. Fuel, 2019, 255, 115846.	3.4	25
38	Mineral Transformation in Char and Its Effect on Coal Char Gasification Reactivity at High Temperatures Part 3: Carbon Thermal Reaction. Energy & Fuels, 2014, 28, 3066-3073.	2.5	24
39	Moisture adsorption and spontaneous combustion characteristics of biomass wastes after degradative solvent extraction. Fuel, 2020, 266, 117109.	3.4	24
40	Torrefaction behavior of hot-pressed pellets prepared from leucaena wood. Bioresource Technology, 2021, 321, 124502.	4.8	24
41	Kinetic Study on Coal Char Combustion in a Microfluidized Bed. Energy & amp; Fuels, 2017, 31, 3243-3252.	2.5	23
42	Insight into the Effects of Sodium Species with Different Occurrence Modes on the Structural Features of Residues Derived from Direct Liquefaction of Zhundong Coal by Multiple Techniques. Energy & Fuels, 2015, 29, 7142-7149.	2.5	21
43	Degradative solvent extraction of low-rank coals by the mixture of low molecular weight extract and solvent as recycled solvent. Fuel Processing Technology, 2018, 173, 48-55.	3.7	21
44	"Thermal dissolution carbon enrichment―treatment of biomass wastes: Supercapacitor electrode preparation using the residue. Fuel Processing Technology, 2020, 205, 106430.	3.7	21
45	Inappropriateness of the Standard Method in Sulfur Form Analysis of Char from Coal Pyrolysis. Energy & Fuels, 2012, 26, 5837-5842.	2.5	19
46	Upgrading and multistage separation of rice straw by degradative solvent extraction. Journal of Fuel Chemistry and Technology, 2015, 43, 422-428.	0.9	19
47	Preparation of activated carbon nanofibers using degradative solvent extraction products obtained from low-rank coal and their utilization in supercapacitors. RSC Advances, 2020, 10, 8172-8180.	1.7	19
48	Thermochemical conversion of lignocellulosic bio-waste via fast pyrolysis in molten salts. Fuel, 2020, 278, 118228.	3.4	19
49	Gas-pressurized torrefaction of biomass wastes: The effect of varied pressure on pyrolysis kinetics and mechanism of torrefied biomass. Fuel, 2020, 276, 118132.	3.4	18
50	Study on reduction characteristics of Fe species in coal ash under SNCR condition. Fuel, 2020, 277, 118231.	3.4	18
51	Synergistic effects during co-pyrolysis and liquefaction of biomass and lignite under syngas. Journal of Thermal Analysis and Calorimetry, 2015, 119, 2133-2140.	2.0	17
52	Enhancement of Gasification Reactivity of Low-Rank Coal through High-Temperature Solvent Treatment. Energy & Fuels, 2014, 28, 5690-5695.	2.5	16
53	Mechanism of Ca Additive Acting as a Deterrent to Na ₂ CO ₃ Deactivation during Catalytic Coal Gasification. Energy & Fuels, 2019, 33, 938-945.	2.5	16
54	Investigation of Slagging Characteristics on Middle and low temperature heat transfers by Burning High Sodium and Iron coal. Combustion Science and Technology, 2022, 194, 1768-1787.	1.2	16

#	Article	IF	CITATIONS
55	A novel CO2-water leaching method for AAEM removal from coal: Suppression of PM formation and release during Zhundong coal combustion. Fuel, 2020, 271, 117689.	3.4	16
56	Yield prediction of "Thermal-dissolution based carbon enrichment―treatment on biomass wastes through coupled model of artificial neural network and AdaBoost. Bioresource Technology, 2022, 343, 126083.	4.8	16
57	Influence of different biomass ash additive on anthracite pyrolysis process and char gasification reactivity. International Journal of Coal Science and Technology, 2020, 7, 464-475.	2.7	15
58	Characterization of slag from anthracite gasification in moving bed slagging gasifier. Fuel, 2021, 292, 120390.	3.4	15
59	Degradative solvent extraction of demineralized and ion-exchanged low-rank coals. Journal of Fuel Chemistry and Technology, 2014, 42, 897-904.	0.9	14
60	Viscosity of Spinel Primary Phase Field Slags from Australian Brown Coals. Energy & Fuels, 2020, 34, 3041-3056.	2.5	14
61	Comparison study of fusibility between coal ash and synthetic ash. Fuel Processing Technology, 2021, 211, 106593.	3.7	14
62	The importance of coil conductivity and eddy current effects in the analysis of electromagnetic forming process. High Voltage, 2022, 7, 390-404.	2.7	13
63	Pretreatment of Petroleum Coke To Enhance the Reactivity of Catalytic Gasification in Fluidized Beds. Energy & Fuels, 2018, 32, 8115-8120.	2.5	12
64	The role of residual char on ash flow behavior, Part 3: Effect of Fe2O3 content on ash fusibility and carbothermal reaction. Fuel, 2020, 280, 118705.	3.4	12
65	Molecular characteristics of the soluble components from three low-rank coals based on the analyses using GC/MS and GC/Q-TOF MS. Fuel, 2019, 254, 115602.	3.4	11
66	An updated acid dew point temperature estimation method for air-firing and oxy-fuel combustion processes. Fuel Processing Technology, 2016, 154, 204-209.	3.7	10
67	Preparation of carbon nanofiber with specific features by degradative solvent extraction product from biomass wastes. Fuel, 2019, 258, 116149.	3.4	10
68	Comparison of Kinetics and Activity of Niâ€Based Catalysts for Benzyl Phenyl Ether Catalytic Hydrogenolysis. Energy Technology, 2019, 7, 1800694.	1.8	10
69	Gas-pressurized torrefaction of biomass wastes: Self-promoted deoxygenation of rice straw at low temperature. Fuel, 2022, 308, 122029.	3.4	10
70	Interaction between Coal and Biomass during Co-Gasification: A Perspective Based on the Separation of Blended Char. Processes, 2022, 10, 286.	1.3	9
71	Towards understanding the interactions between mild liquefaction solid product and Hami sub-bituminous coal during their co-pyrolysis. Journal of Analytical and Applied Pyrolysis, 2020, 145, 104742.	2.6	8
72	Torrefaction under mechanical pressure of 10–70ÂMPa at 250°C and its effect on pyrolysis behaviours of leucaena wood. Bioresource Technology, 2021, 338, 125503.	4.8	8

#	Article	IF	CITATIONS
73	Dispersion of modified carbon nanotubes in 1-butyl-3-methyl imidazolium tetrafluoroborate. Journal of Materials Science, 2006, 41, 3123-3126.	1.7	6
74	Influence of the Slag–Crucible Interaction on Coal Ash Fusion Behavior at High Temperatures. Energy & Fuels, 2020, 34, 3087-3099.	2.5	6
75	"Thermal-dissolution based carbon enrichment―treatment of biomass wastes: Mechanism study of biomass pyrolysis in a highly-dispersed medium. Energy Conversion and Management, 2021, 238, 114151.	4.4	5
76	Feasibility study on co-processing of automobile shredder residue in coal-fired power plants via pyrolysis. Waste Management, 2022, 143, 135-143.	3.7	5
77	Degradative solvent extraction of low-rank coal: Role of water on pyrolysis mechanism of low-rank coal in a highly-dispersed medium. Carbon Resources Conversion, 2022, 5, 111-118.	3.2	5
78	Insight into molecular information of Huolinguole lignite obtained by Fourier transform ion cyclotron resonance mass spectrometry and statistical methods. Rapid Communications in Mass Spectrometry, 2019, 33, 1107-1113.	0.7	2
79	Combustion Behavior of Low-Rank Coal Upgraded by Degradative Solvent Extraction. , 2016, , 31-37.		2
80	Upgrading of low-rank coal and biomass utilizing mild solvent treatment at around 350°C. , 2011, , .		1
81	Correction to Effect of Vanadium on the Petroleum Coke Ash Fusibility. Energy & Fuels, 2017, 31, 5710-5710.	2.5	1
82	In-Depth Experimental Study on Thermochemical Conversion of Furan in Molten Alkali Carbonates. Energy & Fuels, 2020, 34, 12724-12733.	2.5	1
83	Interactions of cationic surfactant cetyl-trimethyl ammonium bromide with ammonium nitrate: Surface and thermodynamic studies. Chinese Journal of Chemical Physics, 2021, 34, 480-486.	0.6	1
84	Boosted Thermal Storage Performance of LiOH·H2O by Carbon Nanotubes Isolated Multilayered Graphene Oxide Frames. Advances in Materials Science and Engineering, 2022, 2022, 1-11.	1.0	1
85	Theoretical research on mercury-laden halogenated activated carbon adsorbent product stability. The Proceedings of the International Conference on Power Engineering (ICOPE), 2021, 2021.15, 2021-0167.	0.0	0