
Maxime Assous

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/497502/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuropilin 2/Plexin-A3 Receptors Regulate the Functional Connectivity and the Excitability in the Layers 4 and 5 of the Cerebral Cortex. Journal of Neuroscience, 2022, , JN-RM-1965-21.	3.6	0
2	Striatal cholinergic transmission. Focus on nicotinic receptors' influence in striatal circuits. European Journal of Neuroscience, 2021, 53, 2421-2442.	2.6	34
3	Emergence of novel functions in striatal lowâ€ŧhreshold spike interneurons (Commentary on Gazan et) Tj ETQq1 ∶	1 0.78431 2.6	4_rgBT /Ove 2
4	Neuropilin 2 Signaling Mediates Corticostriatal Transmission, Spine Maintenance, and Goal-Directed Learning in Mice. Journal of Neuroscience, 2019, 39, 8845-8859.	3.6	24
5	Cortical and thalamic inputs exert cell typeâ€specific feedforward inhibition on striatal GABAergic interneurons. Journal of Neuroscience Research, 2019, 97, 1491-1502.	2.9	10
6	Pedunculopontine Glutamatergic Neurons Provide a Novel Source of Feedforward Inhibition in the Striatum by Selectively Targeting Interneurons. Journal of Neuroscience, 2019, 39, 4727-4737.	3.6	39
7	Excitatory extrinsic afferents to striatal interneurons and interactions with striatal microcircuitry. European Journal of Neuroscience, 2019, 49, 593-603.	2.6	67
8	Heterogeneity and Diversity of Striatal GABAergic Interneurons: Update 2018. Frontiers in Neuroanatomy, 2018, 12, 91.	1.7	145
9	Identification and Characterization of a Novel Spontaneously Active Bursty GABAergic Interneuron in the Mouse Striatum. Journal of Neuroscience, 2018, 38, 5688-5699.	3.6	24
10	Differential processing of thalamic information via distinct striatal interneuron circuits. Nature Communications, 2017, 8, 15860.	12.8	72
11	Neostriatal GABAergic Interneurons Mediate Cholinergic Inhibition of Spiny Projection Neurons. Journal of Neuroscience, 2016, 36, 9505-9511.	3.6	65
12	Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits. Nature Neuroscience, 2016, 19, 1025-1033.	14.8	122
13	Novel fast adapting interneurons mediate cholinergicâ€induced fast <scp>GABA_A</scp> inhibitory postsynaptic currents in striatal spiny neurons. European Journal of Neuroscience, 2015, 42, 1764-1774.	2.6	57
14	Progressive Parkinsonism by acute dysfunction of excitatory amino acid transporters in the rat substantia nigra. Neurobiology of Disease, 2014, 65, 69-81.	4.4	42