Ernest Lacey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4974932/publications.pdf

Version: 2024-02-01

35	792	17 h-index	27
papers	citations		g-index
36	36	36	889
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Yeppoonic acids A – D: 1,2,4-trisubstituted arene carboxylic acid co-metabolites of conglobatin from an Australian Streptomyces sp Journal of Antibiotics, 2022, 75, 108-112.	2.0	3
2	Discovery of brevijanazines from <i>Aspergillus brevijanus</i> reveals the molecular basis for <i>p</i> -nitrobenzoic acid in fungi. Chemical Communications, 2022, 58, 6296-6299.	4.1	5
3	Bifurcation drives the evolution of assembly-line biosynthesis. Nature Communications, 2022, 13, .	12.8	10
4	Hancockiamides: phenylpropanoid piperazines from <i>Aspergillus hancockii</i> are biosynthesised by a versatile dual single-module NRPS pathway. Organic and Biomolecular Chemistry, 2021, 19, 587-595.	2.8	24
5	Semisynthesis and biological evaluation of a focused library of unguinol derivatives as next-generation antibiotics. Organic and Biomolecular Chemistry, 2021, 19, 1022-1036.	2.8	11
6	Chlorinated metabolites from <i>Streptomyces</i> sp. highlight the role of biosynthetic mosaics and superclusters in the evolution of chemical diversity. Organic and Biomolecular Chemistry, 2021, 19, 6147-6159.	2.8	8
7	Evaluation of Benzguinols as Next-Generation Antibiotics for the Treatment of Multidrug-Resistant Bacterial Infections. Antibiotics, 2021, 10, 727.	3.7	1
8	In vitro selection of Giardia duodenalis for Albendazole resistance identifies a \hat{l}^2 -tubulin mutation at amino acid E198K. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 16, 162-173.	3.4	7
9	Characterisation and heterologous biosynthesis of burnettiene A, a new polyene-decalin polyketide from <i>Aspergillus burnettii</i> . Organic and Biomolecular Chemistry, 2021, 19, 9506-9513.	2.8	8
10	Genome Mining of <i>Aspergillus hancockii</i> Unearths Cryptic Polyketide Hancockinone A Featuring a Prenylated 6/6/6/5 Carbocyclic Skeleton. Organic Letters, 2021, 23, 8789-8793.	4.6	6
11	Genomics-Driven Discovery of Phytotoxic Cytochalasans Involved in the Virulence of the Wheat Pathogen <i>Parastagonospora nodorum</i> ACS Chemical Biology, 2020, 15, 226-233.	3.4	24
12	Production of novel pladienolide analogues through native expression of a pathway-specific activator. Chemical Science, 2020, 11, 8249-8255.	7.4	5
13	Comprehensive chemotaxonomic and genomic profiling of a biosynthetically talented Australian fungus, Aspergillus burnettii sp. nov Fungal Genetics and Biology, 2020, 143, 103435.	2.1	19
14	Total Synthesis of the Antitumor–Antitubercular 2,6′-Bijuglone Natural Product Diospyrin and Its 3,6′-Isomer. Journal of Natural Products, 2020, 83, 3623-3634.	3.0	1
15	Rechoreographing Enterocin's Ballet of Isomers: Structure Revision of Enterocins C, D, and F. Organic Letters, 2020, 22, 9688-9692.	4.6	4
16	Conglobatins B–E: cytotoxic analogues of the C2-symmetric macrodiolide conglobatin. Journal of Antibiotics, 2020, 73, 756-765.	2.0	8
17	Biosynthesis of a New Benzazepine Alkaloid Nanangelenin A from <i>Aspergillus nanangensis</i> Involves an Unusual <scp>I</scp> -Kynurenine-Incorporating NRPS Catalyzing Regioselective Lactamization. Journal of the American Chemical Society, 2020, 142, 7145-7152.	13.7	35
18	The chemical gymnastics of enterocin: evidence for stereodivergence in Nature. Organic and Biomolecular Chemistry, 2020, 18, 5879-5890.	2.8	11

#	Article	IF	CITATIONS
19	Heterologous biosynthesis of elsinochrome A sheds light on the formation of the photosensitive perylenequinone system. Chemical Science, 2019, 10, 1457-1465.	7.4	68
20	Discovery and Heterologous Biosynthesis of the Burnettramic Acids: Rare PKS-NRPS-Derived Bolaamphiphilic Pyrrolizidinediones from an Australian Fungus, <i>Aspergillus burnettii</i> Letters, 2019, 21, 1287-1291.	4.6	54
21	Nanangenines: drimane sesquiterpenoids as the dominant metabolite cohort of a novel Australian fungus, <i>Aspergillus nanangensis</i>). Beilstein Journal of Organic Chemistry, 2019, 15, 2631-2643.	2.2	22
22	Expanding antibiotic chemical space around the nidulin pharmacophore. Organic and Biomolecular Chemistry, 2018, 16, 3038-3051.	2.8	15
23	A study of the chemical diversity of macroalgae from South Eastern Australia. Fìtoterapìâ, 2018, 126, 53-64.	2.2	8
24	Chemical Ecogenomics-Guided Discovery of Phytotoxic \hat{l} ±-Pyrones from the Fungal Wheat Pathogen <i>Parastagonospora nodorum </i> <ion style="color: red; color: blue;">language (i) - language (i) -</ion>	4.6	30
25	Proteomic diversity in a prevalent human-infective Giardia duodenalis sub-species. International Journal for Parasitology, 2018, 48, 817-823.	3.1	10
26	Banksialactones and Banksiamarins: Isochromanones and Isocoumarins from an Australian Fungus, <i>Aspergillus banksianus</i> . Journal of Natural Products, 2018, 81, 1517-1526.	3.0	22
27	Waspergillamide A, a Nitro <i>depsi</i> -Tetrapeptide Diketopiperazine from an Australian Mud Dauber Wasp-Associated <i>Aspergillus</i> sp. (CMB-W031). Journal of Natural Products, 2017, 80, 1192-1195.	3.0	22
28	Aspergillus hancockii sp. nov., a biosynthetically talented fungus endemic to southeastern Australian soils. PLoS ONE, 2017, 12, e0170254.	2.5	35
29	Kumbicins A–D: Bis-Indolyl Benzenoids and Benzoquinones from an Australian Soil Fungus, Aspergillus kumbius. Australian Journal of Chemistry, 2016, 69, 152.	0.9	28
30	Wollamides: Antimycobacterial Cyclic Hexapeptides from an Australian Soil <i>Streptomyces</i> Organic Letters, 2014, 16, 5120-5123.	4.6	47
31	Reveromycins Revealed: New polyketidespiroketals from Australian marine-derived and terrestrial Streptomyces spp. A case of natural productsvs. artifacts. Organic and Biomolecular Chemistry, 2011, 9, 1201-1211.	2.8	27
32	Secondary metabolites: The focus of biodiscovery and perhaps the key to unlocking new depths in taxonomy. Microbiology Australia, 2003, 24, 34.	0.4	12
33	Binding of [3H]benzimidazole carbamates to mammalian brain tubulin and the mechanism of selective toxicity of the benzimidazole anthelmintics. Biochemical Pharmacology, 1992, 43, 1095-1100.	4.4	39
34	Interaction of phomopsin A and related compounds with purified sheep brain tubulin. Biochemical Pharmacology, 1987, 36, 2133-2138.	4.4	51
35	Interactions of benzimidazoles (BZ) with tubulin from BZ-sensitive and BZ-resistant isolates of Haemonchus contortus. Molecular and Biochemical Parasitology, 1986, 19, 171-181.	1.1	109