Riadh Issaoui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4974899/publications.pdf Version: 2024-02-01

RIADH ISSAOUL

#	Article	IF	CITATIONS
1	Dislocation density reduction using overgrowth on hole arrays made in heteroepitaxial diamond substrates. Applied Physics Letters, 2021, 118, .	1.5	16
2	Phonon-assisted transitions of bound excitons in diamond: Analysis by mirror symmetry. Physical Review B, 2020, 101, .	1.1	4
3	Epitaxial diamond on Ir/ SrTiO3/Si (001): From sequential material characterizations to fabrication of lateral Schottky diodes. Diamond and Related Materials, 2020, 105, 107768.	1.8	18
4	Microstructure and biological evaluation of nanocrystalline diamond films deposited on titanium substrates using distributed antenna array microwave system. Diamond and Related Materials, 2020, 103, 107700.	1.8	3
5	Defect and Threading Dislocations in Single Crystal Diamond: A Focus on Boron and Nitrogen Codoping. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900581.	0.8	9
6	Phosphorus-doped (113) CVD diamond: A breakthrough towards bipolar diamond devices. Applied Physics Letters, 2019, 114, 112106.	1.5	26
7	Thick and widened high quality heavily boron doped diamond single crystals synthetized with high oxygen flow under high microwave power regime. Diamond and Related Materials, 2019, 94, 88-91.	1.8	10
8	Radiative lifetime of boron-bound excitons in diamond. Applied Physics Letters, 2019, 114, .	1.5	7
9	Investigation of a distributed antenna array microwave system for the three-dimensional low-temperature growth of nanocrystalline diamond films. Diamond and Related Materials, 2019, 94, 28-36.	1.8	6
10	Ohmic graphite-metal contacts on oxygen-terminated lightly boron-doped CVD monocrystalline diamond. Diamond and Related Materials, 2019, 92, 18-24.	1.8	13
11	Selfâ€Assembled Silica Nanoparticles for Diamond Nanoâ€ S tructuration. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800391.	0.8	3
12	Performance Enhancement of Al ₂ O ₃ /H-Diamond MOSFETs Utilizing Vacuum Annealing and V ₂ O ₅ as a Surface Electron Acceptor. IEEE Electron Device Letters, 2018, 39, 1354-1357.	2.2	16
13	An assessment of contact metallization for high power and high temperature diamond Schottky devices. Diamond and Related Materials, 2012, 27-28, 23-28.	1.8	26
14	Homoepitaxial boronâ€doped diamond with very low compensation. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1750-1753.	0.8	32
15	Freestanding CVD boron doped diamond single crystals: A substrate for vertical power electronic devices?. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1651-1658.	0.8	33
16	Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices. Applied Physics Letters, 2012, 100, .	1.5	25
17	Dislocations and impurities introduced from etch-pits at the epitaxial growth resumption of diamond. Diamond and Related Materials, 2011, 20, 875-881.	1.8	32
18	Thick boron doped diamond single crystals for high power electronics. Diamond and Related Materials, 2011, 20, 145-152.	1.8	66

RIADH ISSAOUI

#	Article	IF	CITATIONS
19	Influence of oxygen addition on the crystal shape of CVD boron doped diamond. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2023-2027.	0.8	20
20	Boron acceptor concentration in diamond from excitonic recombination intensities. Physical Review B, 2011, 83, .	1.1	44
21	Diode Schottky sur diamant CVD. Simulation, réalisation technologique et étude de protection périphérique. European Journal of Electrical Engineering, 2011, 14, 553-567.	1.1	0
22	Growth of thick heavily boron-doped diamond single crystals: Effect of microwave power density. Applied Physics Letters, 2010, 97, .	1.5	36
23	Evolution of Diamond Crystal Shape with Boron Concentration during CVD Growth. , 2010, , .		1
24	CVD diamond Schottky barrier diode, carrying out and characterization. Diamond and Related Materials, 2010, 19, 792-795.	1.8	18
25	Ionized Physical Vapour Deposition combined with PECVD, for synthesis of carbon–metal nanocomposite thin films. Solid State Sciences, 2009, 11, 1824-1827.	1.5	14
26	Identification of etchâ€pit crystallographic faces induced on diamond surface by H ₂ /O ₂ etching plasma treatment. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1949-1954.	0.8	55
27	Back Cover (Phys. Status Solidi A 9/2009). Physica Status Solidi (A) Applications and Materials Science, 2009, 206, NA-NA.	0.8	0