
Wen Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4974554/publications.pdf Version: 2024-02-01

WEN XIAC

#	Article	IF	CITATIONS
1	Interfacial sp C–O–Mo Hybridization Originated High-Current Density Hydrogen Evolution. Journal of the American Chemical Society, 2021, 143, 8720-8730.	13.7	152
2	Controllable and Stable Quantized Conductance States in a Pt/HfO <i>_x</i> /ITO Memristor. Advanced Electronic Materials, 2020, 6, 1901055.	5.1	31
3	Solar-driven efficient methane catalytic oxidation over epitaxial ZnO/La0.8Sr0.2CoO3 heterojunctions. Applied Catalysis B: Environmental, 2020, 265, 118469.	20.2	44
4	Electrode-controlled confinement of conductive filaments in a nanocolumn embedded symmetric–asymmetric RRAM structure. Journal of Materials Chemistry C, 2020, 8, 1577-1582.	5.5	16
5	Elucidating the Nature of the Cu(I) Active Site in CuO/TiO ₂ for Excellent Low-Temperature CO Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 7091-7101.	8.0	51
6	Realization of "single-atom ferromagnetism―in graphene by Cu–N4 moieties anchoring. Applied Physics Letters, 2020, 116, .	3.3	9
7	Bifunctional Electrocatalytic Activity of Nitrogen-Doped NiO Nanosheets for Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 30865-30871.	8.0	41
8	Oxygen Vacancy Promoted O ₂ Activation over Perovskite Oxide for Low-Temperature CO Oxidation. ACS Catalysis, 2019, 9, 9751-9763.	11.2	296
9	Electronic structure modulation of NiS ₂ by transition metal doping for accelerating the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 4971-4976.	10.3	93
10	7. Recovery of valuable metals from e-waste via applications of nanomaterials. , 2019, , 234-260.		1
11	High-Magnetization Tetragonal Ferrite-Based Films Induced by Carbon and Oxygen Vacancy Pairs. ACS Applied Materials & Interfaces, 2019, 11, 1049-1056.	8.0	5
12	Bimetallic Nickel Cobalt Sulfide as Efficient Electrocatalyst for Zn–Air Battery and Water Splitting. Nano-Micro Letters, 2019, 11, 2.	27.0	179
13	Pre-surface leached cordierite honeycombs for MnxCo3-xO4 nano-sheet array integration with enhanced hydrocarbons combustion. Catalysis Today, 2019, 320, 196-203.	4.4	26
14	Dualâ€Native Vacancy Activated Basal Plane and Conductivity of MoSe ₂ with Highâ€Efficiency Hydrogen Evolution Reaction. Small, 2018, 14, e1704150.	10.0	114
15	Molecular O ₂ Activation over Cu(I)-Mediated Câ‰;N Bond for Low-Temperature CO Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 17167-17174.	8.0	22
16	Mesoporous Perovskite Nanotubeâ€Array Enhanced Metallic tate Platinum Dispersion for Low Temperature Propane Oxidation. ChemCatChem, 2018, 10, 2184-2189.	3.7	14
17	In Situ Grown Epitaxial Heterojunction Exhibits Highâ€Performance Electrocatalytic Water Splitting. Advanced Materials, 2018, 30, e1705516.	21.0	375
18	Selfâ€Powered Waterâ€Splitting Devices by Core–Shell NiFe@Nâ€Graphiteâ€Based Zn–Air Batteries. Advan Functional Materials, 2018, 28, 1706928.	ced 14.9	155

WEN XIAO

#	Article	IF	CITATIONS
19	Boosting catalytic propane oxidation over PGM-free Co3O4 nanocrystal aggregates through chemical leaching: A comparative study with Pt and Pd based catalysts. Applied Catalysis B: Environmental, 2018, 226, 585-595.	20.2	113
20	Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy, 2018, 48, 73-80.	16.0	608
21	High Lithium Insertion Voltage Singleâ€Crystal H ₂ Ti ₁₂ O ₂₅ Nanorods as a Highâ€Capacity and Highâ€Rate Lithiumâ€Ion Battery Anode Material. ChemSusChem, 2018, 11, 299-310.	6.8	18
22	Molecular Insights into NO-Promoted Sulfate Formation on Model TiO ₂ Nanoparticles with Different Exposed Facets. Environmental Science & Technology, 2018, 52, 14110-14118.	10.0	19
23	Transition-metal-doped NiSe2 nanosheets towards efficient hydrogen evolution reactions. Nano Research, 2018, 11, 6051-6061.	10.4	72
24	Ar ²⁺ Beam Irradiation-Induced Multivancancies in MoSe ₂ Nanosheet for Enhanced Electrochemical Hydrogen Evolution. ACS Energy Letters, 2018, 3, 2167-2172.	17.4	73
25	Hydrogen Evolution Catalyzed by a Molybdenum Sulfide Two-Dimensional Structure with Active Basal Planes. ACS Applied Materials & Interfaces, 2018, 10, 22042-22049. Interfacial antiferromagnetic coupling between <mml:math< td=""><td>8.0</td><td>22</td></mml:math<>	8.0	22
26	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>SrRu</mml:mi><mml:msub><mml: mathvariant="normal">O<mml:mn>3</mml:mn></mml: </mml:msub></mml:mrow> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">L<mml:msub><mml:mi< td=""><td>:mi 2.4</td><td>4</td></mml:mi<></mml:msub></mml:mi </mml:mrow></mml:math>	:mi 2.4	4
27	mathvariant="normal">a <mml:mrow><mml:mn>0.7</mml:mn></mml:mrow> <mml:mi Enhanced oxygen evolution reaction by Co-O-C bonds in rationally designed Co3O4/graphene nanocomposites. Nano Energy, 2017, 33, 445-452.</mml:mi 	16.0	131
28	Activating and Optimizing Activity of CoS ₂ for Hydrogen Evolution Reaction through the Synergic Effect of N Dopants and S Vacancies. ACS Energy Letters, 2017, 2, 1022-1028.	17.4	229
29	Phase-transfer induced room temperature ferromagnetic behavior in 1T@2H-MoSe2 nanosheets. Scientific Reports, 2017, 7, 45307.	3.3	23
30	Activating Basal Planes and Sâ€Terminated Edges of MoS ₂ toward More Efficient Hydrogen Evolution. Advanced Functional Materials, 2017, 27, 1604943.	14.9	131
31	Dualâ€Functional N Dopants in Edges and Basal Plane of MoS ₂ Nanosheets Toward Efficient and Durable Hydrogen Evolution. Advanced Energy Materials, 2017, 7, 1602086.	19.5	286
32	Copper dopants improved the hydrogen evolution activity of earth-abundant cobalt pyrite catalysts by activating the electrocatalytically inert sulfur sites. Journal of Materials Chemistry A, 2017, 5, 17601-17608.	10.3	61
33	Economical Fe-doped Ta2O5 electrocatalyst toward efficient oxygen evolution: a combined experimental and first-principles study. MRS Communications, 2017, 7, 563-569.	1.8	3
34	Oxygen deficiency and cooling field driven vertical hysteretic shift in epitaxial SrRuO3/SrTiO3 heterostructures. Applied Physics Letters, 2017, 111, .	3.3	20
35	Synthesis of Ferromagnetic Fe _{0.6} Mn _{0.4} O Nanoflowers as a New Class of Magnetic Theranostic Platform for In Vivo T ₁ â€T ₂ Dualâ€Mode Magnetic Resonance Imaging and Magnetic Hyperthermia Therapy. Advanced Healthcare Materials, 2016, 5, 2092-2104.	7.6	75
36	High catalytic activity of oxygen-induced (200) surface of Ta2O5 nanolayer towards durable oxygen evolution reaction. Nano Energy, 2016, 25, 60-67.	16.0	36

Wen Xiao

#	Article	IF	CITATIONS
37	One-dimensional fossil-like <i>γ</i> -Fe ₂ O ₃ @carbon nanostructure: preparation, structural characterization and application as adsorbent for fast and selective recovery of gold ions from aqueous solution. Nanotechnology, 2016, 27, 415701.	2.6	4
38	Metallic Ni ₃ N nanosheets with exposed active surface sites for efficient hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 17363-17369.	10.3	233
39	Novel room-temperature spin-valve-like magnetoresistance in magnetically coupled nano-column Fe ₃ O ₄ /Ni heterostructure. Nanoscale, 2016, 8, 15737-15743.	5.6	9
40	Facile synthesis of waterâ€dispersible magnetite nanorings from surfactantâ€free hematite nanorings. Micro and Nano Letters, 2016, 11, 814-818.	1.3	3
41	Extremely low frequency alternating magnetic field–triggered and MRI–traced drug delivery by optimized magnetic zeolitic imidazolate framework-90 nanoparticles. Nanoscale, 2016, 8, 3259-3263.	5.6	63
42	Low temperature propane oxidation over Co3O4 based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability. Applied Catalysis B: Environmental, 2016, 180, 150-160.	20.2	174
43	L10-FePt films fabricated by wet-chemical route. Thin Solid Films, 2015, 589, 649-654.	1.8	1
44	A Facile Chemical Solutionâ€Based Method for Epitaxial Growth of Thick Ferrite Films. Advanced Electronic Materials, 2015, 1, 1500102.	5.1	2
45	Shape-dependent microwave permeability of Fe ₃ O ₄ nanoparticles: a combined experimental and theoretical study. Nanotechnology, 2015, 26, 265704.	2.6	11
46	Magnetic anisotropy modulation of epitaxial Fe3O4 films on MgO substrates. Journal of Applied Physics, 2015, 117, .	2.5	19
47	Orientation Mediated Enhancement on Magnetic Hyperthermia of Fe ₃ O ₄ Nanodisc. Advanced Functional Materials, 2015, 25, 812-820.	14.9	121
48	Nanoscale Magnetization Reversal Caused by Electric Field-Induced Ion Migration and Redistribution in Cobalt Ferrite Thin Films. ACS Nano, 2015, 9, 4210-4218.	14.6	60
49	Magnetic-field-assisted synthesis of magnetite nanoparticles via thermal decomposition and their hyperthermia properties. CrystEngComm, 2015, 17, 3652-3658.	2.6	21
50	Nano-Array Catalysts for Energy and Environmental Catalysis. , 2015, , 339-370.		1
51	Achieving a high magnetization in sub-nanostructured magnetite films by spin-flipping of tetrahedral Fe3+ cations. Nano Research, 2015, 8, 2935-2945.	10.4	21
52	Size dependent magnetic hyperthermia of octahedral Fe ₃ O ₄ nanoparticles. RSC Advances, 2015, 5, 76764-76771.	3.6	64
53	Stable zinc-blende ZnO thin films: formation and physical properties. Journal of Materials Science, 2015, 50, 28-33.	3.7	13
54	Intrinsic and interfacial effect of electrode metals on the resistive switching behaviors of zinc oxide films. Nanotechnology, 2014, 25, 425204.	2.6	49

Wen Xiao

#	Article	IF	CITATIONS
55	Mechanical-Agitation-Assisted Growth of Large-Scale and Uniform ZnO Nanorod Arrays within 3D Multichannel Monolithic Substrates. Crystal Growth and Design, 2013, 13, 3657-3664.	3.0	27
56	Magnetic and optical studies of hydrogenated Cu-doped ZnO film. Journal of the Korean Physical Society, 2013, 62, 1738-1743.	0.7	3
57	Robust 3-D configurated metal oxide nano-array based monolithic catalysts with ultrahigh materials usage efficiency and catalytic performance tunability. Nano Energy, 2013, 2, 873-881.	16.0	76
58	Synthesis of nonstoichiometric zinc ferrite nanoparticles with extraordinary room temperature magnetism and their diverse applications. Journal of Materials Chemistry C, 2013, 1, 2875.	5.5	115
59	Controllable synthesis of ZnO nanoparticles with high intensity visible photoemission and investigation of its mechanism. Nanotechnology, 2013, 24, 175702.	2.6	29
60	IMPROVED CAPACITIVE BEHAVIOR OF MnO ₂ THIN FILMS PREPARED BY ELECTRODEPOSITION ON THE PT SUBSTRATE WITH A MnO _x BUFFER LAYER. Functional Materials Letters, 2009, 02, 13-18.	1.2	36