Timothy G Hammond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4974512/publications.pdf

Version: 2024-02-01

30 1,052 13 25 g-index

31 31 31 31 1290

31 31 31 1290 all docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Intrinsic Factor-Vitamin B12 Receptor and Target of Teratogenic Antibodies Is a Megalin-binding Peripheral Membrane Protein with Homology to Developmental Proteins. Journal of Biological Chemistry, 1998, 273, 5235-5242.	3.4	233
2	Effects of spaceflight on murine skeletal muscle gene expression. Journal of Applied Physiology, 2009, 106, 582-595.	2.5	205
3	Inhibition of Nuclear Factor-κB–Mediated Adhesion Molecule Expression in Human Endothelial Cells. Circulation Research, 1998, 82, 314-320.	4.5	131
4	Light chains are a ligand for megalin. Journal of Applied Physiology, 2005, 98, 257-263.	2 . 5	77
5	Renal endosomes contain angiotensin peptides, converting enzyme, and AT _{1A} receptors. American Journal of Physiology - Renal Physiology, 1999, 277, F303-F311.	2.7	67
6	Effects of Microgravity on the Virulence of <i>Listeria monocytogenes, Enterococcus faecalis, Candida albicans, </i> and Methicillin-Resistant <i>Staphylococcus aureus </i> Astrobiology, 2013, 13, 1081-1090.	3.0	51
7	Diamagnetic levitation changes growth, cell cycle, and gene expression of Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2007, 98, 854-863.	3.3	46
8	<i>Saccharomyces cerevisiae</i> gene expression changes during rotating wall vessel suspension culture. Journal of Applied Physiology, 2002, 93, 2171-2180.	2 . 5	40
9	Characterization of bimodal cell death of insect cells in a rotating-wall vessel and shaker flask. , 1999, 64, 14-26.		25
10	Genes Required for Survival in Microgravity Revealed by Genome-Wide Yeast Deletion Collections Cultured during Spaceflight. BioMed Research International, 2015, 2015, 1-10.	1.9	23
11	Human proximal tubular cell responses to angiotensin II analyzed using DNA microarray. European Journal of Pharmacology, 2003, 464, 87-94.	3.5	18
12	Effects of Space Flight on Mouse Liver versus Kidney: Gene Pathway Analyses. International Journal of Molecular Sciences, 2018, 19, 4106.	4.1	17
13	Is There a Space-Based Technology Solution to Problems with Preclinical Drug Toxicity Testing?. Pharmaceutical Research, 2016, 33, 1545-1551.	3 . 5	15
14	Expression of renal cell protein markers is dependent on initial mechanical culture conditions. Journal of Applied Physiology, 2002, 92, 691-700.	2.5	14
15	The Bonn Criteria: Minimal Experimental Parameter Reporting for Clinostat and Random Positioning Machine Experiments with Cells and Tissues. Microgravity Science and Technology, 2011, 23, 271-275.	1.4	14
16	Novel Sfp1 Transcriptional Regulation of <i>Saccharomyces cerevisiae </i> Gene Expression Changes During Spaceflight. Astrobiology, 2008, 8, 1071-1078.	3.0	13
17	Analysis and isolation of renal tubular cells by flow cytometry. Kidney International, 1992, 42, 997-1005.	5.2	11
18	Transcriptional regulation of changes in growth, cell cycle, and gene expression of <i>Saccharomyces cerevisiae</i> due to changes in buoyancy. Biotechnology and Bioengineering, 2008, 100, 334-343.	3.3	10

#	Article	IF	CITATIONS
19	Physical Forces Modulate Oxidative Status and Stress Defense Meditated Metabolic Adaptation of Yeast Colonies: Spaceflight and Microgravity Simulations. Microgravity Science and Technology, 2018, 30, 195-208.	1.4	10
20	Effects of Microgravity on the Virulence of <i>Salmonella </i> Toward <i>Caenorhabditis elegans </i> New Space, 2013, 1, 123-131.	0.8	7
21	Role of Shear Stress on Renal Proximal Tubular Cells for Nephrotoxicity Assays. Journal of Toxicology, 2021, 2021, 1-6.	3.0	7
22	Hepatocyte CYP2B6 Can Be Expressed in Cell Culture Systems by Exerting Physiological Levels of Shear: Implications for ADME Testing. Journal of Toxicology, 2017, 2017, 1-5.	3.0	5
23	Validation of Assays for Reactive Oxygen Species and Glutathione in <i>Saccharomyces cerevisiae</i> during Microgravity Simulation. Gravitational and Space Research: Publication of the American Society for Gravitational and Space Research, 2015, 3, 42-53.	0.8	4
24	Gene Pathways Analysis of the Effects of Suspension Culture on Primary Human Renal Proximal Tubular Cells. Microgravity Science and Technology, 2018, 30, 951-963.	1.4	3
25	Establishing a Low Redox Potential in Giant Yeast Colonies: Effects of Media and Rotation. Gravitational and Space Research: Publication of the American Society for Gravitational and Space Research, 2016, 4, 27-38.	0.8	3
26	Cell spinpods are a simple inexpensive suspension culture device to deliver fluid shear stress to renal proximal tubular cells. Scientific Reports, 2021, 11, 21296.	3.3	2
27	Yeast in Space. , 2019, , 1-16.		1
28	Vaccines in Space., 2019, , 1-17.		0
29	Yeast in Space. , 2022, , 717-732.		0
30	Vaccines in Space. , 2022, , 805-821.		0