Aaron Morelos-Gomez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4974274/publications.pdf

Version: 2024-02-01

52 papers

2,270 citations

304701 22 h-index 214788 47 g-index

52 all docs 52 docs citations

times ranked

52

4023 citing authors

#	Article	IF	CITATIONS
1	Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nature Nanotechnology, 2017, 12, 1083-1088.	31.5	307
2	Conducting linear chains of sulphur inside carbon nanotubes. Nature Communications, 2013, 4, 2162.	12.8	228
3	Thermal stability studies of CVD-grown graphene nanoribbons: Defect annealing and loop formation. Chemical Physics Letters, 2009, 469, 177-182.	2.6	170
4	Super-stretchable Graphene Oxide Macroscopic Fibers with Outstanding Knotability Fabricated by Dry Film Scrolling. ACS Nano, 2014, 8, 5959-5967.	14.6	170
5	Defect Engineering and Surface Functionalization of Nanocarbons for Metalâ€Free Catalysis. Advanced Materials, 2019, 31, e1805717.	21.0	139
6	High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite. Scientific Reports, 2015, 5, 13562.	3.3	101
7	Electrically functional 3D-architectured graphene/SiC composites. Carbon, 2016, 100, 318-328.	10.3	89
8	Large Area Films of Alternating Graphene–Carbon Nanotube Layers Processed in Water. ACS Nano, 2013, 7, 10788-10798.	14.6	85
9	Synthesis of conducting graphene/Si3N4 composites by spark plasma sintering. Carbon, 2013, 57, 425-432.	10.3	80
10	Formation of Nitrogen-Doped Graphene Nanoribbons <i>via</i> Chemical Unzipping. ACS Nano, 2013, 7, 2192-2204.	14.6	80
11	Controlling the dimensions, reactivity and crystallinity of multiwalled carbon nanotubes using low ethanol concentrations. Chemical Physics Letters, 2008, 453, 55-61.	2.6	66
12	Controlling high coercivities of ferromagnetic nanowires encapsulated in carbon nanotubes. Journal of Materials Chemistry, 2010, 20, 5906.	6.7	59
13	Clean Nanotube Unzipping by Abrupt Thermal Expansion of Molecular Nitrogen: Graphene Nanoribbons with Atomically Smooth Edges. ACS Nano, 2012, 6, 2261-2272.	14.6	54
14	Millimeter-Long Carbon Nanotubes: Outstanding Electron-Emitting Sources. ACS Nano, 2011, 5, 5072-5077.	14.6	50
15	Salt rejection behavior of carbon nanotube-polyamide nanocomposite reverse osmosis membranes in several salt solutions. Desalination, 2018, 443, 165-171.	8.2	44
16	Robust water desalination membranes against degradation using high loads of carbon nanotubes. Scientific Reports, 2018, 8, 2748.	3.3	41
17	New Insights in the Natural Organic Matter Fouling Mechanism of Polyamide and Nanocomposite Multiwalled Carbon Nanotubes-Polyamide Membranes. Environmental Science & Environm	10.0	38
18	Antiorganic Fouling and Low-Protein Adhesion on Reverse-Osmosis Membranes Made of Carbon Nanotubes and Polyamide Nanocomposite. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32192-32201.	8.0	36

#	Article	IF	Citations
19	Correlation in structure and properties of highly-porous graphene monoliths studied with a thermal treatment method. Carbon, 2016, 96, 174-183.	10.3	34
20	Oil sorption by exfoliated graphite from dilute oil–water emulsion for practical applications in produced water treatments. Journal of Water Process Engineering, 2015, 8, 91-98.	5.6	26
21	Effective Antiscaling Performance of Reverse-Osmosis Membranes Made of Carbon Nanotubes and Polyamide Nanocomposites. ACS Omega, 2018, 3, 6047-6055.	3.5	25
22	Water Diffusion Mechanism in Carbon Nanotube and Polyamide Nanocomposite Reverse Osmosis Membranes: A Possible Percolation-Hopping Mechanism. Physical Review Applied, 2018, 9, .	3.8	23
23	Controlling the Optical, Electrical and Chemical Properties of Carbon Inverse Opal by Nitrogen Doping. Advanced Functional Materials, 2014, 24, 2612-2619.	14.9	22
24	Aligned carbon nanotube/silicon carbide hybrid materials with high electrical conductivity, superhydrophobicity and superoleophilicity. Carbon, 2014, 80, 120-126.	10.3	22
25	Oil removing properties of exfoliated graphite in actual produced water treatment. Journal of Water Process Engineering, 2017, 20, 226-231.	5.6	22
26	Nitrogen–phosphorus doped graphitic nano onion-like structures: experimental and theoretical studies. RSC Advances, 2021, 11, 2793-2803.	3.6	20
27	Nanocomposite desalination membranes made of aromatic polyamide with cellulose nanofibers: synthesis, performance, and water diffusion study. Nanoscale, 2020, 12, 19628-19637.	5.6	19
28	3D Nanocomposites of Covalently Interconnected Multiwalled Carbon Nanotubes with SiC with Enhanced Thermal and Electrical Properties. Advanced Functional Materials, 2015, 25, 4985-4993.	14.9	18
29	Antifouling performance of spiral wound type module made of carbon nanotubes/polyamide composite RO membrane for seawater desalination. Desalination, 2022, 523, 115445.	8.2	18
30	CO2 adsorption on crystalline graphitic nanostructures. Journal of CO2 Utilization, 2014, 5, 60-65.	6.8	17
31	Nanostructured carbon-based membranes: nitrogen doping effects on reverse osmosis performance. NPG Asia Materials, 2016, 8, e258-e258.	7.9	17
32	Tuning the electronic and magnetic properties of graphene nanoribbons through phosphorus doping and functionalization. Materials Chemistry and Physics, 2021, 265, 124450.	4.0	16
33	Nitrogen-doped-CNTs/Si3N4 nanocomposites with high electrical conductivity. Journal of the European Ceramic Society, 2014, 34, 1097-1104.	5.7	15
34	Enhanced Antifouling Feed Spacer Made from a Carbon Nanotube–Polypropylene Nanocomposite. ACS Omega, 2019, 4, 15496-15503.	3.5	14
35	High Performance and Chlorine Resistant Carbon Nanotube/Aromatic Polyamide Reverse Osmosis Nanocomposite Membrane. MRS Advances, 2016, 1, 1469-1476.	0.9	12
36	Graphene oxide membranes for lactose-free milk. Carbon, 2021, 181, 118-129.	10.3	12

#	Article	IF	Citations
37	Directional Electrical Transport in Tough Multifunctional Layered Ceramic/Graphene Composites. Advanced Electronic Materials, 2015, 1, 1500132.	5.1	10
38	Biotin molecules on nitrogen-doped carbon nanotubes enhance the uniform anchoring and formation of Ag nanoparticles. Carbon, 2015, 88, 51-59.	10.3	10
39	H2O2/UV layer-by-layer oxidation of multiwall carbon nanotubes: The "onion effect―and the control of the degree of surface crystallinity and diameter. Carbon, 2018, 139, 1027-1034.	10.3	10
40	Magnetic and Electrical Properties of Nitrogen-Doped Multiwall Carbon Nanotubes Fabricated by a Modified Chemical Vapor Deposition Method. Journal of Nanomaterials, 2015, 2015, 1-14.	2.7	7
41	Magnetic Properties of Encapsulated Nanoparticles in Nitrogen-Doped Multiwalled Cabon Nanotubes Embedded in SiO _{<i>x</i>} Matrices. Journal of Nanoscience and Nanotechnology, 2010, 10, 5576-5582.	0.9	6
42	Metal–semiconductor transition like behavior of naphthalene-doped single wall carbon nanotube bundles. Faraday Discussions, 2014, 173, 145-156.	3.2	6
43	Enhanced desalination performance in compacted carbon-based reverse osmosis membranes. Nanoscale Advances, 2020, 2, 3444-3451.	4.6	6
44	Boron-assisted coalescence of parallel multi-walled carbon nanotubes. RSC Advances, 2013, 3, 26266.	3 . 6	5
45	Modified Carbon Nanotubes. , 2013, , 189-232.		4
46	Pyrrolic nitrogen-doped multiwall carbon nanotubes using ball-milled slag-SiC mixtures as a catalyst by aerosol assisted chemical vapor deposition. Materials Research Express, 2020, , .	1.6	4
47	Hybrid materials based on pyrrhotite, troilite, and few-layered graphitic nanostructures: Synthesis, characterization, and cyclic voltammetry studies. Applied Surface Science, 2021, 563, 150327.	6.1	4
48	Catalytic Nanocarbons: Defect Engineering and Surface Functionalization of Nanocarbons for Metalâ€Free Catalysis (Adv. Mater. 13/2019). Advanced Materials, 2019, 31, 1970096.	21.0	3
49	Data Science Applied to Carbon Materials: Synthesis, Characterization, and Applications. Advanced Theory and Simulations, 2022, 5, 2100205.	2.8	3
50	Synthesis, Characterization and Magnetic Properties of Defective Nitrogen-Doped Multiwall Carbon Nanotubes Encapsulating Ferromagnetic Nanoparticles. Journal of Nano Research, 2014, 28, 39-49.	0.8	2
51	Nitrogen and Sulfur Incorporation into Graphene Oxide by Mechanical Process. Advanced Engineering Materials, 2021, 23, 2001444.	3.5	1
52	Ultra-high Molecular Weight Polyethylene /Graphite Nanocomposites Prepared by High-energy Cryomilling Materials Research Society Symposia Proceedings, 2013, 1453, 82.	0.1	0