
Daria S Zaytseva-Zotova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4974269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High resolution imaging of soft alginate hydrogels by atomic force microscopy. Carbohydrate Polymers, 2022, 276, 118804.	10.2	12
2	Alginate and tunicate nanocellulose composite microbeads – Preparation, characterization and cell encapsulation. Carbohydrate Polymers, 2022, 286, 119284.	10.2	6
3	Comprehensive study of the drug delivery properties of poly(I -lactide)-poly(ethylene glycol) nanoparticles in rats and tumor-bearing mice. Journal of Controlled Release, 2017, 261, 31-42.	9.9	53
4	Macroporous modified poly (vinyl alcohol) hydrogels with charged groups for tissue engineering: Preparation and in vitro evaluation. Materials Science and Engineering C, 2017, 75, 1075-1082.	7.3	25
5	3D in vitro co-culture models based on normal cells and tumor spheroids formed by cyclic RGD-peptide induced cell self-assembly. Biotechnology Letters, 2017, 39, 45-53.	2.2	15
6	Macroporous hydrogels based on chitosan derivatives: Preparation, characterization, and <i>in vitro</i> evaluation. Journal of Applied Polymer Science, 2017, 134, .	2.6	14
7	Novel Doxorubicin Derivatives: Synthesis and Cytotoxicity Study in 2D and 3D in Vitro Models. Advanced Pharmaceutical Bulletin, 2017, 7, 593-601.	1.4	15
8	Formation of multicellular tumor spheroids induced by cyclic RGD-peptides and use for anticancer drug testing in vitro. International Journal of Pharmaceutics, 2016, 506, 148-157.	5.2	45
9	DC Discharge Plasma Modification of Chitosan Films: An Effect of Chitosan Chemical Structure. Plasma Processes and Polymers, 2015, 12, 710-718.	3.0	27
10	Multicellular tumor spheroids in microcapsules as a novel 3D in vitro model in tumor biology. BMC Proceedings, 2013, 7, .	1.6	1
11	DC discharge plasma modification of chitosan/gelatin/PLLA films: Surface properties, chemical structure and cell affinity. Surface and Coatings Technology, 2012, 207, 508-516.	4.8	48
12	Biocompatible Smart Microcapsules Based on Chitosanâ€Poly(vinyl alcohol) Copolymers for Cultivation of Animal Cells. Advanced Engineering Materials, 2011, 13, B493.	3.5	14
13	Polyelectrolyte microcapsules with entrapped multicellular tumor spheroids as a novel tool to study the effects of photodynamic therapy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 97B, 255-262.	3.4	14
14	Microencapsulated multicellular tumor spheroids as a novel in vitro model for drug screening. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2010, 4, 243-250.	0.4	4