Bikash R Pattnaik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4974033/publications.pdf Version: 2024-02-01

RIKACH P. DATTNIAIK

#	Article	IF	CITATIONS
1	Optic Vesicle-like Structures Derived from Human Pluripotent Stem Cells Facilitate a Customized Approach to Retinal Disease Treatment. Stem Cells, 2011, 29, 1206-1218.	3.2	413
2	A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nature Nanotechnology, 2019, 14, 974-980.	31.5	252
3	iPS cell modeling of Best disease: insights into the pathophysiology of an inherited macular degeneration. Human Molecular Genetics, 2013, 22, 593-607.	2.9	194
4	Terpenoids from Zingiber officinale (Ginger) Induce Apoptosis in Endometrial Cancer Cells through the Activation of p53. PLoS ONE, 2012, 7, e53178.	2.5	112
5	CTRP5 Is a Membrane-Associated and Secretory Protein in the RPE and Ciliary Body and the S163R Mutation of CTRP5 Impairs Its Secretion. , 2006, 47, 5505.		74
6	GABAC Receptors Are Localized with Microtubule-Associated Protein 1B in Mammalian Cone Photoreceptors. Journal of Neuroscience, 2000, 20, 6789-6796.	3.6	64
7	GABAAand GABACreceptors in adult porcine cones: evidence from a photoreceptor-glia co-culture model. Journal of Physiology, 1998, 513, 33-42.	2.9	63
8	A pH-responsive silica–metal–organic framework hybrid nanoparticle for the delivery of hydrophilic drugs, nucleic acids, and CRISPR-Cas9 genome-editing machineries. Journal of Controlled Release, 2020, 324, 194-203.	9.9	55
9	A Novel Approach to Single Cell RNA-Sequence Analysis Facilitates In Silico Gene Reporting of Human Pluripotent Stem Cell-Derived Retinal Cell Types. Stem Cells, 2018, 36, 313-324.	3.2	54
10	High glucose promotes the migration of retinal pigment epithelial cells through increased oxidative stress and PEDF expression. American Journal of Physiology - Cell Physiology, 2016, 311, C418-C436.	4.6	51
11	A Novel <i>KCNJ13</i> Nonsense Mutation and Loss of Kir7.1 Channel Function Causes Leber Congenital Amaurosis (LCA16). Human Mutation, 2015, 36, 720-727.	2.5	46
12	In vivo targeted delivery of nucleic acids and CRISPR genome editors enabled by GSH-responsive silica nanoparticles. Journal of Controlled Release, 2021, 336, 296-309.	9.9	42
13	Mouse Tmem135 mutation reveals a mechanism involving mitochondrial dynamics that leads to age-dependent retinal pathologies. ELife, 2016, 5, .	6.0	38
14	Gene Augmentation and Readthrough Rescue Channelopathy in an iPSC-RPE Model of Congenital Blindness. American Journal of Human Genetics, 2019, 104, 310-318.	6.2	36
15	Snowflake Vitreoretinal Degeneration (SVD) Mutation R162W Provides New Insights into Kir7.1 Ion Channel Structure and Function. PLoS ONE, 2013, 8, e71744.	2.5	36
16	Human iPSC Modeling Reveals Mutation-Specific Responses to Gene Therapy in a Genotypically Diverse Dominant Maculopathy. American Journal of Human Genetics, 2020, 107, 278-292.	6.2	35
17	Genetic defects in the hotspot of inwardly rectifying K+ (Kir) channels and their metabolic consequences: A review. Molecular Genetics and Metabolism, 2012, 105, 64-72.	1.1	34
18	Focus on K _{ir} 7.1: physiology and channelopathy. Channels, 2014, 8, 488-495.	2.8	30

BIKASH R PATTNAIK

#	Article	IF	CITATIONS
19	Role of the sigma-1 receptor chaperone in rod and cone photoreceptor degenerations in a mouse model of retinitis pigmentosa. Molecular Neurodegeneration, 2017, 12, 68.	10.8	30
20	Regulation of Kir channels in bovine retinal pigment epithelial cells by phosphatidylinositol 4,5-bisphosphate. American Journal of Physiology - Cell Physiology, 2009, 297, C1001-C1011.	4.6	29
21	Effects of KCNQ channel modulators on the M-type potassium current in primate retinal pigment epithelium. American Journal of Physiology - Cell Physiology, 2012, 302, C821-C833.	4.6	29
22	Oxytocin Expression and Function in the Posterior Retina: A Novel Signaling Pathway. Investigative Ophthalmology and Visual Science, 2015, 56, 751-760.	3.3	28
23	Oxytocin (OXT)-stimulated inhibition of Kir7.1 activity is through PIP 2 -dependent Ca 2+ response of the oxytocin receptor in the retinal pigment epithelium in vitro. Cellular Signalling, 2017, 37, 93-102.	3.6	25
24	Abnormal Electroretinogram after Kir7.1 Channel Suppression Suggests Role in Retinal Electrophysiology. Scientific Reports, 2017, 7, 10651.	3.3	24
25	Novel anti-angiogenic PEDF-derived small peptides mitigate choroidal neovascularization. Experimental Eye Research, 2019, 188, 107798.	2.6	24
26	Photoreceptor protection via blockade of BET epigenetic readers in a murine model of inherited retinal degeneration. Journal of Neuroinflammation, 2017, 14, 14.	7.2	22
27	The Natural Product β-Escin Targets Cancer and Stromal Cells of the Tumor Microenvironment to Inhibit Ovarian Cancer Metastasis. Cancers, 2021, 13, 3931.	3.7	20
28	Loss of Chondroitin Sulfate Modification Causes Inflammation and Neurodegeneration in <i>skt</i> Mice. Genetics, 2020, 214, 121-134.	2.9	18
29	Potential independent action of sigma receptor ligands through inhibition of the Kv2.1 channel. Oncotarget, 2017, 8, 59345-59358.	1.8	14
30	Sensing through Non-Sensing Ocular Ion Channels. International Journal of Molecular Sciences, 2020, 21, 6925.	4.1	11
31	Vigabatrin-Induced Retinal Functional Alterations and Second-Order Neuron Plasticity in C57BL/6J Mice. , 2020, 61, 17.		11
32	Plumbagin-induced oxidative stress leads to inhibition of Na+/K+-ATPase (NKA) in canine cancer cells. Scientific Reports, 2019, 9, 11471.	3.3	10
33	Oxidative stress induced by the anti-cancer agents, plumbagin, and atovaquone, inhibits ion transport through Na+/K+-ATPase. Scientific Reports, 2020, 10, 19585.	3.3	7
34	Modulation of <i>Tmem135</i> Leads to Retinal Pigmented Epithelium Pathologies in Mice. , 2020, 61, 16.		7
35	A mutation in transmembrane protein 135 impairs lipid metabolism in mouse eyecups. Scientific Reports, 2022, 12, 756.	3.3	7
36	Kir7.1 disease mutant T153I within the inner pore affects K ⁺ conduction. American Journal of Physiology - Cell Physiology, 2022, 323, C56-C68.	4.6	7

BIKASH R PATTNAIK

#	Article	IF	CITATIONS
37	Hypoxic–ischemic injury causes functional and structural neurovascular degeneration in the juvenile mouse retina. Scientific Reports, 2021, 11, 12670.	3.3	5
38	In situ autofluorescence lifetime assay of a photoreceptor stimulus response in mouse retina and human retinal organoids. Biomedical Optics Express, 2022, 13, 3476.	2.9	5
39	Cell line donor genotype and its influence on experimental phenotype: Toll-like receptor SNPs and potential variability in innate immunity. Molecular Genetics and Metabolism, 2016, 118, 147-152.	1.1	3
40	Pregnancyâ€adapted uterine artery endothelial cell Ca2+ signaling and its relationship with membrane potential. Physiological Reports, 2017, 5, e13452.	1.7	3
41	Mouse retinal pigment epithelial cells exhibit a thiocyanate-selective conductance. American Journal of Physiology - Cell Physiology, 2018, 315, C457-C473.	4.6	3
42	Neurotensin and neurotensin receptor 1 mRNA expression in songâ€control regions changes during development in male zebra finches. Developmental Neurobiology, 2018, 78, 671-686.	3.0	2
43	Retinal Development and Pathophysiology in Kcnj13 Knockout Mice. Frontiers in Cell and Developmental Biology, 2021, 9, 810020.	3.7	2
44	700: Pregnancy-enhanced changes in membrane potential are not driven by pregnancy-enhanced Ca2+ signaling in uterine artery endothelial cells (UAEC). American Journal of Obstetrics and Gynecology, 2014, 210, S344-S345.	1.3	0
45	Sideâ€Chain Polarity of Amino Acids within the Kir7.1 Channel Pore Lining Determine Permeability and Function. FASEB Journal, 2021, 35, .	0.5	0
46	The Visual System. , 2007, , 1-4.		0
47	Does a Lack of Oxytocinergic Signaling in the Alveolar Epithelial Cell Contribute to Development of Respiratory Distress in Preterm Infants?. Pediatrics, 2016, 137, 436A-436A.	2.1	0
48	Polarized Expression of Kir7.1 Channels in a 3D Organoid Culture Model. FASEB Journal, 2019, 33, .	0.5	0