
Gary O Rankin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4974028/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonpungent N-AVAM Capsaicin Analogues and Cancer Therapy. Journal of Medicinal Chemistry, 2021, 64, 1346-1361.	6.4	7
2	Theasaponin E1 Inhibits Platinum-Resistant Ovarian Cancer Cells through Activating Apoptosis and Suppressing Angiogenesis. Molecules, 2021, 26, 1681.	3.8	12
3	Gallic Acid Induces S and G2 Phase Arrest and Apoptosis in Human Ovarian Cancer Cells In Vitro. Applied Sciences (Switzerland), 2021, 11, 3807.	2.5	4
4	Trichodermin Induces G0/G1 Cell Cycle Arrest by Inhibiting c-Myc in Ovarian Cancer Cells and Tumor Xenograft-Bearing Mice. International Journal of Molecular Sciences, 2021, 22, 5022.	4.1	7
5	Nephrotoxic Potential of Putative 3,5-Dichloroaniline (3,5-DCA) Metabolites and Biotransformation of 3,5-DCA in Isolated Kidney Cells from Fischer 344 Rats. International Journal of Molecular Sciences, 2021, 22, 292.	4.1	2
6	Standardized Saponin Extract from Baiye No.1 Tea (Camellia sinensis) Flowers Induced S Phase Cell Cycle Arrest and Apoptosis via AKT-MDM2-p53 Signaling Pathway in Ovarian Cancer Cells. Molecules, 2020, 25, 3515.	3.8	21
7	Polyphenols Extracted from Chinese Hickory (Carya cathayensis) Promote Apoptosis and Inhibit Proliferation through the p53-Dependent Intrinsic and HIF-11±-VEGF Pathways in Ovarian Cancer Cells. Applied Sciences (Switzerland), 2020, 10, 8615.	2.5	4
8	Purified Tea (Camellia sinensis (L.) Kuntze) Flower Saponins Induce the p53-Dependent Intrinsic Apoptosis of Cisplatin-Resistant Ovarian Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 4324.	4.1	4
9	Galangin, a Flavonoid from Lesser Galangal, Induced Apoptosis via p53-Dependent Pathway in Ovarian Cancer Cells. Molecules, 2020, 25, 1579.	3.8	40
10	Metabolic Syndrome and Salt-Sensitive Hypertension in Polygenic Obese TALLYHO/JngJ Mice: Role of Na/K-ATPase Signaling. International Journal of Molecular Sciences, 2019, 20, 3495.	4.1	9
11	Effects of cytochrome P450 single nucleotide polymorphisms on methadone metabolism and pharmacodynamics. Biochemical Pharmacology, 2018, 153, 196-204.	4.4	54
12	Flavonoids from Chinese bayberry leaves induced apoptosis and G1 cell cycle arrest via Erk pathway in ovarian cancer cells. European Journal of Medicinal Chemistry, 2018, 147, 218-226.	5.5	60
13	Dietary compound proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves inhibit angiogenesis and regulate cell cycle of cisplatin-resistant ovarian cancer cells via targeting Akt pathway. Journal of Functional Foods, 2018, 40, 573-581.	3.4	35
14	Synergistic effect of black tea polyphenol, theaflavin-3,3′-digallate with cisplatin against cisplatin resistant human ovarian cancer cells. Journal of Functional Foods, 2018, 46, 1-11.	3.4	24
15	Theaflavin-3,3′-digallate inhibits ovarian cancer stem cells via suppressing Wnt/β-Catenin signaling pathway. Journal of Functional Foods, 2018, 50, 1-7.	3.4	17
16	Historical Perspective of Nephrotoxicity. Toxicological Sciences, 2018, 164, 377-378.	3.1	2
17	Anti-Proliferation Effect of Theasaponin E1 on the ALDH-Positive Ovarian Cancer Stem-Like Cells. Molecules, 2018, 23, 1469.	3.8	6
18	Prodelphinidins isolated from Chinese bayberry leaves induces apoptosis via the p53-dependent signaling pathways in OVCAR-3 human ovarian cancer cells. Oncology Letters, 2017, 13, 3210-3218.	1.8	17

GARY O RANKIN

#	Article	IF	CITATIONS
19	3-Hydroxyterphenyllin, a natural fungal metabolite, induces apoptosis and S phase arrest in human ovarian carcinoma cells. International Journal of Oncology, 2017, 50, 1392-1402.	3.3	18
20	Tell-Tale SNPs: The Role of CYP2B6 in Methadone Fatalities. Journal of Analytical Toxicology, 2017, 41, 325-333.	2.8	32
21	Anti-proliferative effect and cell cycle arrest induced by saponins extracted from tea (Camellia) Tj ETQq1 1 0.784	1314 rgBT 3.4	Överlock 10
22	Role of Free Radicals and Biotransformation in Trichloronitrobenzene-Induced Nephrotoxicity In Vitro. International Journal of Molecular Sciences, 2017, 18, 1165.	4.1	1
23	Systematic review of nephrotoxicity of drugs of abuse, 2005–2016. BMC Nephrology, 2017, 18, 379.	1.8	29
24	Inhibitory Effects of Total Triterpenoid Saponins Isolated from the Seeds of the Tea Plant (Camellia) Tj ETQq0 0	0 rg₿Ţ /O\	verlock 10 Tf 5
25	Inhibitory effect of black tea pigments, theaflavin-3/3′-gallate against cisplatin-resistant ovarian cancer cells by inducing apoptosis and G1 cell cycle arrest. International Journal of Oncology, 2017, 51, 1508-1520.	3.3	28
26	Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells. Oncology Reports, 2016, 35, 291-297.	2.6	96
27	Theaflavin-3, 3′-digallate induces apoptosis and G2 cell cycle arrest through the Akt/MDM2/p53 pathway in cisplatin-resistant ovarian cancer A2780/CP70 cells. International Journal of Oncology, 2016, 48, 2657-2665.	3.3	45
28	The role of biotransformation and oxidative stress in 3,5-dichloroaniline (3,5-DCA) induced nephrotoxicity in isolated renal cortical cells from male Fischer 344 rats. Toxicology, 2016, 341-343, 47-55.	4.2	8
29	Theaflavin-3, 3′-digallate decreases human ovarian carcinoma OVCAR-3 cell-induced angiogenesis via Akt and Notch-1 pathways, not via MAPK pathways. International Journal of Oncology, 2016, 48, 281-292.	3.3	63
30	Editorial overview: Cardiovascular and renal: Recent advances, novel treatments and new targets for cardiovascular and renal diseases. Current Opinion in Pharmacology, 2016, 27, iv-vi.	3.5	0
31	Inhibitory Effects of the Four Main Theaflavin Derivatives Found in Black Tea on Ovarian Cancer Cells. Anticancer Research, 2016, 36, 643-51.	1.1	22
32	Myricetin inhibits proliferation of cisplatin-resistant cancer cells through a p53-dependent apoptotic pathway. International Journal of Oncology, 2015, 47, 1494-1502.	3.3	52
33	The flavonoid nobiletin inhibits tumor growth and angiogenesis of ovarian cancers via the Akt pathway. International Journal of Oncology, 2015, 46, 2629-2638.	3.3	71
34	Selecting bioactive phenolic compounds as potential agents to inhibit proliferation and VEGF expression in human ovarian cancer cells. Oncology Letters, 2015, 9, 1444-1450.	1.8	44
35	Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis. Journal of Functional Foods, 2015, 15, 464-475.	3.4	104
36	Chaetoglobosin K induces apoptosis and G2 cell cycle arrest through p53-dependent pathway in cisplatin-resistant ovarian cancer cells. Cancer Letters, 2015, 356, 418-433.	7.2	57

GARY O RANKIN

#	Article	IF	CITATIONS
37	Oxidative Stress Induced Following Exposure to 3,5â€Dichloroaniline (3,5â€DCA) In Vitro: Role in Nephrotoxicity. FASEB Journal, 2015, 29, 938.7.	0.5	0
38	3,4,5-Trichloroaniline Nephrotoxicity in Vitro: Potential Role of Free Radicals and Renal Biotransformation. International Journal of Molecular Sciences, 2014, 15, 20900-20912.	4.1	7
39	4-Amino-2-chlorophenol: Comparative in vitro nephrotoxicity and mechanisms of bioactivation. Chemico-Biological Interactions, 2014, 222, 126-132.	4.0	2
40	Fatal Methadone Toxicity: Potential Role of CYP3A4 Genetic Polymorphism. Journal of Analytical Toxicology, 2014, 38, 541-547.	2.8	29
41	Metalloproteinase dependent reduction of cell surface cluster determinants upon the induction of apoptosis. International Journal of Oncology, 2014, 44, 1539-1550.	3.3	2
42	Role of renal biotransformation in 3,4,5â€ŧrichloroaniline nephrotoxicity in vitro (1063.1). FASEB Journal, 2014, 28, 1063.1.	0.5	1
43	Effect of cytochrome P450 isozyme inhibitors on 3,5―dichloroaniline nephrotoxicity in vitro. FASEB Journal, 2013, 27, .	0.5	0
44	Attenuation of 1,2,3â€ŧrichloroâ€4â€nitrobenzene nephrotoxicity by antioxidants and inhibitors of biotransformation. FASEB Journal, 2013, 27, 889.9.	0.5	0
45	Role of leukotrienes in N-(3,5-dichlorophenyl)succinimide (NDPS) and NDPS metabolite nephrotoxicity in male Fischer 344 rats. Toxicology, 2012, 300, 92-99.	4.2	1
46	Kaempferol induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chemistry, 2011, 128, 513-519.	8.2	145
47	Comparative in vitro aminophenol and aminochlorophenolâ€induced nephrotoxicity. FASEB Journal, 2011, 25, 1087.4.	0.5	0
48	<i>In vitro</i> nephrotoxicity induced by propanil. Environmental Toxicology, 2008, 23, 435-442.	4.0	23
49	Nephrotoxicity induced by <i>N</i> â€(3,5â€dichlorophenyl)â€3â€hydroxysuccinamic acid in male and female Fischer 344 rats. Journal of Applied Toxicology, 2008, 28, 867-873.	2.8	3
50	Mechanistic aspects of 4-amino-2,6-dichlorophenol-induced in vitro nephrotoxicity. Toxicology, 2008, 245, 123-129.	4.2	10
51	Nephrotoxicity induced by the R- and S-enantiomers of N-(3,5-dichlorophenyl)-2-hydroxysuccinimide (NDHS) and their sulfate conjugates in male Fischer 344 rats. Toxicology, 2007, 240, 38-47.	4.2	4
52	NEPHROTOXICITY INDUCED BY C- AND N-ARYLSUCCINIMIDES. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2004, 7, 399-416.	6.5	18
53	EFFECT OF THREE N -ACETYLAMINO ACIDS ON N -(3,5-DICHLOROPHENYL)SUCCINIMIDE (NDPS) AND NDPS METABOLITE NEPHROTOXICITY IN FISCHER 344 RATS. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2002, 65, 539-556.	2.3	2
54	In vitro nephrotoxicity induced by chloronitrobenzenes in renal cortical slices from Fischer 344 rats. Toxicology Letters, 2002, 129, 133-141.	0.8	18

GARY O RANKIN

#	Article	IF	CITATIONS
55	Haloaniline-induced in vitro nephrotoxicity: effects of 4-haloanilines and 3,5-dihaloanilines. Toxicology Letters, 2000, 114, 125-133.	0.8	23
56	Characterization of methemoglobin formation induced by 3,5-dichloroaniline, 4-amino-2,6-dichlorophenol and 3,5-dichlorophenylhydroxylamine. Toxicology, 1997, 118, 23-36.	4.2	16
57	4-Amino-2,6-Dichlorophenol Nephrotoxicity in the Fischer 344 Rat: Protection by Ascorbic Acid, AT-125, and Aminooxyacetic Acid. Toxicology and Applied Pharmacology, 1997, 147, 115-125.	2.8	10
58	3,5-Dichloroaniline toxicity in Fischer 344 rats pretreated with inhibitors and inducers of cytochrome P450. Toxicology Letters, 1995, 78, 207-214.	0.8	17
59	In vivo and in vitro 4-amino-2,6-dichlorophenol nephrotoxicity and hepatotoxicity in the Fischer 344 ratâ~†. Toxicology, 1994, 90, 115-128.	4.2	16
60	Acute renal and hepatic toxicity of 2-haloanilines in Fischer 344 rats. Toxicology, 1992, 75, 121-131.	4.2	28
61	Acute nephrotoxicity induced by isomeric dichloroanilines in Fischer 344 rats. Toxicology, 1990, 63, 215-231.	4.2	67