Herre S J Van Der Zant

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4973890/herre-s-j-van-der-zant-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

296
papers

26,328
h-index

313
ext. papers

29,702
ext. citations

78
h-index

9
7.17
avg, IF
L-index

#	Paper	IF	Citations
296	Magnetic-Field Universality of the Kondo Effect Revealed by Thermocurrent Spectroscopy <i>Physical Review Letters</i> , 2022 , 128, 147701	7.4	2
295	Spin-Crossover in Supramolecular Iron(II)-2,6-bis(1-Pyrazol-1-yl)pyridine Complexes: Toward Spin-State Switchable Single-Molecule Junctions <i>ACS Omega</i> , 2022 , 7, 13654-13666	3.9	0
294	Ferritin-Based Single-Electron Devices. <i>Biomolecules</i> , 2022 , 12, 705	5.9	
293	Nanomechanical probing and strain tuning of the Curie temperature in suspended Cr2Ge2Te6-based heterostructures. <i>Npj 2D Materials and Applications</i> , 2022 , 6,	8.8	2
292	Controlling the Entropy of a Single-Molecule Junction. <i>Nano Letters</i> , 2021 , 21, 9715-9719	11.5	3
291	Chemical Design and Magnetic Ordering in Thin Layers of 2D Metal-Organic Frameworks (MOFs). Journal of the American Chemical Society, 2021 , 143, 18502-18510	16.4	4
2 90	Semi-permeability of graphene nanodrums in sucrose solution. 2D Materials, 2021, 8, 015031	5.9	2
289	Benchmark and application of unsupervised classification approaches for univariate data. <i>Communications Physics</i> , 2021 , 4,	5.4	8
288	Complete mapping of the thermoelectric properties of a single molecule. <i>Nature Nanotechnology</i> , 2021 , 16, 426-430	28.7	14
287	Study of charge density waves in suspended 2H-TaS2 and 2H-TaSe2 by nanomechanical resonance. <i>Applied Physics Letters</i> , 2021 , 118, 193105	3.4	2
286	Controlling the anisotropy of a van der Waals antiferromagnet with light. Science Advances, 2021, 7,	14.3	13
285	Integrating van der Waals materials on paper substrates for electrical and optical applications. <i>Applied Materials Today</i> , 2021 , 23, 101012	6.6	3
284	Porphyrins as building blocks for single-molecule devices. <i>Nanoscale</i> , 2021 , 13, 15500-15525	7.7	4
283	Conformation-dependent charge transport through short peptides. <i>Nanoscale</i> , 2021 , 13, 3002-3009	7.7	1
282	Tuning nonlinear damping in graphene nanoresonators by parametric-direct internal resonance. <i>Nature Communications</i> , 2021 , 12, 1099	17.4	13
281	Substitution Pattern Controlled Quantum Interference in [2.2]Paracyclophane-Based Single-Molecule Junctions. <i>Journal of the American Chemical Society</i> , 2021 , 143, 13944-13951	16.4	2
280	Squeeze-Film Effect on Atomically Thin Resonators in the High-Pressure Limit. <i>Nano Letters</i> , 2021 , 21, 7617-7624	11.5	O

(2020-2021)

279	Dynamics of 2D material membranes. 2D Materials, 2021, 8, 042001	5.9	5
278	Integrating superconducting van der Waals materials on paper substrates. <i>Materials Advances</i> , 2021 , 2, 3274-3281	3.3	2
277	Synthesis and Transport Studies of a Cofacial Porphyrin Cyclophane. <i>Journal of Organic Chemistry</i> , 2020 , 85, 15072-15081	4.2	2
276	Magnetic and electronic phase transitions probed by nanomechanical resonators. <i>Nature Communications</i> , 2020 , 11, 2698	17.4	33
275	Single-molecule functionality in electronic components based on orbital resonances. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 12849-12866	3.6	7
274	A Mechanically Tunable Quantum Dot in a Graphene Break Junction. <i>Nano Letters</i> , 2020 , 20, 4924-4931	11.5	4
273	MoS-on-paper optoelectronics: drawing photodetectors with van der Waals semiconductors beyond graphite. <i>Nanoscale</i> , 2020 , 12, 19068-19074	7.7	15
272	Symmetry Breakdown in Franckeite: Spontaneous Strain, Rippling, and Interlayer Moir□ <i>Nano Letters</i> , 2020 , 20, 1141-1147	11.5	13
271	Single-Material Graphene Thermocouples. Advanced Functional Materials, 2020, 30, 2000574	15.6	10
270	Tunable Photodetectors via In Situ Thermal Conversion of TiS to TiO. Nanomaterials, 2020, 10,	5.4	4
269	Nonequilibrium thermodynamics of acoustic phonons in suspended graphene. <i>Physical Review Research</i> , 2020 , 2,	3.9	6
269268		3.9 7.8	39
	Research, 2020 , 2,		
268	Research, 2020, 2, Nanoelectromechanical Sensors Based on Suspended 2D Materials. Research, 2020, 2020, 8748602 Mechanical Fixation by Porphyrin Connection: Synthesis and Transport Studies of a Bicyclic Dimer.	7.8	39
268 267	Research, 2020, 2, Nanoelectromechanical Sensors Based on Suspended 2D Materials. Research, 2020, 2020, 8748602 Mechanical Fixation by Porphyrin Connection: Synthesis and Transport Studies of a Bicyclic Dimer. Journal of Organic Chemistry, 2020, 85, 118-128 Single-Molecule Transport of Fullerene-Based Curcuminoids. Journal of Physical Chemistry C, 2020,	7.8	39
268267266	Research, 2020, 2, Nanoelectromechanical Sensors Based on Suspended 2D Materials. Research, 2020, 2020, 8748602 Mechanical Fixation by Porphyrin Connection: Synthesis and Transport Studies of a Bicyclic Dimer. Journal of Organic Chemistry, 2020, 85, 118-128 Single-Molecule Transport of Fullerene-Based Curcuminoids. Journal of Physical Chemistry C, 2020, 124, 2698-2704	7.8 4.2 3.8	3945
268267266265	Research, 2020, 2, Nanoelectromechanical Sensors Based on Suspended 2D Materials. Research, 2020, 2020, 8748602 Mechanical Fixation by Porphyrin Connection: Synthesis and Transport Studies of a Bicyclic Dimer. Journal of Organic Chemistry, 2020, 85, 118-128 Single-Molecule Transport of Fullerene-Based Curcuminoids. Journal of Physical Chemistry C, 2020, 124, 2698-2704 Ultrathin complex oxide nanomechanical resonators. Communications Physics, 2020, 3, High-frequency gas effusion through nanopores in suspended graphene. Nature Communications,	7.8 4.2 3.8 5.4	394512

261	Intermolecular Effects on Tunneling through Acenes in Large-Area and Single-Molecule Junctions. Journal of Physical Chemistry C, 2020 , 124, 22776-22783	3.8	8
260	Anisotropic magnetoresistance in spin-orbit semimetal. <i>European Physical Journal Plus</i> , 2020 , 135, 627	3.1	1
259	Raman Fingerprint of Pressure-Induced Phase Transitions in TiS3 Nanoribbons: Implications for Thermal Measurements under Extreme Stress Conditions. <i>ACS Applied Nano Materials</i> , 2020 , 3, 8794-88	0 52 ⁶	10
258	Multi-terminal electronic transport in boron nitride encapsulated TiS3 nanosheets. <i>2D Materials</i> , 2020 , 7, 015009	5.9	8
257	Efficient heating of single-molecule junctions for thermoelectric studies at cryogenic temperatures. <i>Applied Physics Letters</i> , 2019 , 115, 073103	3.4	11
256	Mass measurement of graphene using quartz crystal microbalances. <i>Applied Physics Letters</i> , 2019 , 115, 053102	3.4	4
255	A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria. <i>Nature Communications</i> , 2019 , 10, 4120	17.4	50
254	Robust graphene-based molecular devices. <i>Nature Nanotechnology</i> , 2019 , 14, 957-961	28.7	28
253	High-Frequency Stochastic Switching of Graphene Resonators Near Room Temperature. <i>Nano Letters</i> , 2019 , 19, 1282-1288	11.5	24
252	Single-molecule quantum-transport phenomena in break junctions. <i>Nature Reviews Physics</i> , 2019 , 1, 381	- <u>3</u> 9.6	99
251	Thickness-Dependent Refractive Index of 1L, 2L, and 3L MoS2, MoSe2, WS2, and WSe2. <i>Advanced Optical Materials</i> , 2019 , 7, 1900239	8.1	8o
250	Ground-State Spin Blockade in a Single-Molecule Junction. <i>Physical Review Letters</i> , 2019 , 122, 197701	7.4	20
249	Enhanced Separation Concept (ESC): Removing the Functional Subunit from the Electrode by Molecular Design. <i>European Journal of Organic Chemistry</i> , 2019 , 2019, 5334-5343	3.2	6
248	A reference-free clustering method for the analysis of molecular break-junction measurements. <i>Applied Physics Letters</i> , 2019 , 114, 143102	3.4	35
247	Trapping and electrical characterization of single core/shell iron-based nanoparticles in self-aligned nanogaps. <i>Applied Physics Letters</i> , 2019 , 115, 063104	3.4	1
246	Highly Anisotropic Mechanical and Optical Properties of 2D Layered AsS Membranes. <i>ACS Nano</i> , 2019 , 13, 10845-10851	16.7	34
245	Sealing Graphene Nanodrums. <i>Nano Letters</i> , 2019 , 19, 5313-5318	11.5	18
244	Unravelling the conductance path through single-porphyrin junctions. <i>Chemical Science</i> , 2019 , 10, 8299-	-83.Q5	20

243	Can One Define the Conductance of Amino Acids?. <i>Biomolecules</i> , 2019 , 9,	5.9	13
242	Large Tunability of Strain in WO Single-Crystal Microresonators Controlled by Exposure to H Gas. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2019 , 11, 44438-44443	9.5	5
241	Atomically thin p-n junctions based on two-dimensional materials. <i>Chemical Society Reviews</i> , 2018 , 47, 3339-3358	58.5	158
240	On-chip Heaters for Tension Tuning of Graphene Nanodrums. <i>Nano Letters</i> , 2018 , 18, 2852-2858	11.5	13
239	Spin-state dependent conductance switching in single molecule-graphene junctions. <i>Nanoscale</i> , 2018 , 10, 7905-7911	7.7	32
238	Opto-thermally excited multimode parametric resonance in graphene membranes. <i>Scientific Reports</i> , 2018 , 8, 9366	4.9	23
237	Electric-field induced bistability in single-molecule conductance measurements for boron coordinated curcuminoid compounds. <i>Chemical Science</i> , 2018 , 9, 6988-6996	9.4	12
236	Isoreticular two-dimensional magnetic coordination polymers prepared through pre-synthetic ligand functionalization. <i>Nature Chemistry</i> , 2018 , 10, 1001-1007	17.6	70
235	Massively parallel fabrication of crack-defined gold break junctions featuring sub-3 nm gaps for molecular devices. <i>Nature Communications</i> , 2018 , 9, 3433	17.4	37
234	Large Conductance Variations in a Mechanosensitive Single-Molecule Junction. <i>Nano Letters</i> , 2018 , 18, 5981-5988	11.5	32
233	Quantum Transport through a Single Conjugated Rigid Molecule, a Mechanical Break Junction Study. <i>Accounts of Chemical Research</i> , 2018 , 51, 1359-1367	24.3	30
232	Large birefringence and linear dichroism in TiS nanosheets. <i>Nanoscale</i> , 2018 , 10, 12424-12429	7.7	26
231	Transient thermal characterization of suspended monolayer MoS2. <i>Physical Review Materials</i> , 2018 , 2,	3.2	9
230	Graphene mechanical pixels for Interferometric Modulator Displays. <i>Nature Communications</i> , 2018 , 9, 4837	17.4	12
229	Mechanically controlled quantum interference in graphene break junctions. <i>Nature Nanotechnology</i> , 2018 , 13, 1126-1131	28.7	43
228	Spin signatures in the electrical response of graphene nanogaps. <i>Nanoscale</i> , 2018 , 10, 18169-18177	7.7	6
227	Graphene gas pumps. <i>2D Materials</i> , 2018 , 5, 031009	5.9	13
226	Franckeite as a naturally occurring van der Waals heterostructure. <i>Nature Communications</i> , 2017 , 8, 1440	097.4	68

225	Direct and parametric synchronization of a graphene self-oscillator. <i>Applied Physics Letters</i> , 2017 , 110, 073103	3.4	13
224	Electronics and optoelectronics of quasi-1D layered transition metal trichalcogenides. <i>2D Materials</i> , 2017 , 4, 022003	5.9	92
223	Redox-Induced Gating of the Exchange Interactions in a Single Organic Diradical. <i>ACS Nano</i> , 2017 , 11, 5879-5883	16.7	34
222	Very large scale characterization of graphene mechanical devices using a colorimetry technique. <i>Nanoscale</i> , 2017 , 9, 7559-7564	7.7	11
221	Proximity-Induced Shiba States in a Molecular Junction. <i>Physical Review Letters</i> , 2017 , 118, 117001	7.4	29
220	Phase Transitions in Spin-Crossover Thin Films Probed by Graphene Transport Measurements. <i>Nano Letters</i> , 2017 , 17, 186-193	11.5	69
219	Design of an efficient coherent multi-site single-molecule rectifier. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 29187-29194	3.6	10
218	Nonlinear dynamic characterization of two-dimensional materials. <i>Nature Communications</i> , 2017 , 8, 12	5317.4	70
217	Optomechanics for thermal characterization of suspended graphene. <i>Physical Review B</i> , 2017 , 96,	3.3	20
216	Suspended graphene beams with tunable gap for squeeze-film pressure sensing 2017,		7
215	Static Capacitive Pressure Sensing Using a Single Graphene Drum. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 43205-43210	9.5	28
214	Graphene gas osmometers. 2D Materials, 2017 , 4, 011002	5.9	20
213	Amplitude calibration of 2D mechanical resonators by nonlinear optical transduction. <i>Applied Physics Letters</i> , 2017 , 111, 253104	3.4	11
212	Mechanically controlled quantum interference in individual Estacked dimers. <i>Nature Chemistry</i> , 2016 , 8, 1099-1104	17.6	124
211	Transition from Strong to Weak Electronic Coupling in a Single-Molecule Junction. <i>Physical Review Letters</i> , 2016 , 117, 126804	7.4	30
210	Multiscale Approach to the Study of the Electronic Properties of Two Thiophene Curcuminoid Molecules. <i>Chemistry - A European Journal</i> , 2016 , 22, 12808-18	4.8	16
209	Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties. <i>Scientific Reports</i> , 2016 , 6, 22214	4.9	8o

207	Synthesis of 1,2-biphenylethane based single-molecule diodes. <i>Organic and Biomolecular Chemistry</i> , 2016 , 14, 2439-43	3.9	11
206	Precise and reversible band gap tuning in single-layer MoSe2 by uniaxial strain. <i>Nanoscale</i> , 2016 , 8, 2589) -9.3	102
205	Visualizing the Motion of Graphene Nanodrums. <i>Nano Letters</i> , 2016 , 16, 2768-73	11.5	51
204	Exchange Coupling Inversion in a High-Spin Organic Triradical Molecule. <i>Nano Letters</i> , 2016 , 16, 2066-71	11.5	40
203	Sequential Electron Transport and Vibrational Excitations in an Organic Molecule Coupled to Few-Layer Graphene Electrodes. <i>ACS Nano</i> , 2016 , 10, 2521-7	16.7	36
202	Graphene Squeeze-Film Pressure Sensors. <i>Nano Letters</i> , 2016 , 16, 568-71	11.5	96
201	Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments. <i>Applied Physics Letters</i> , 2016 , 109, 013102	3.4	7
200	Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy. <i>Chemistry of Materials</i> , 2016 , 28, 4042-4051	9.6	64
199	A gate-tunable single-molecule diode. <i>Nanoscale</i> , 2016 , 8, 8919-23	7.7	64
198	Stretching-Induced Conductance Increase in a Spin-Crossover Molecule. <i>Nano Letters</i> , 2016 , 16, 4733-7	11.5	66
197	Colorimetry Technique for Scalable Characterization of Suspended Graphene. <i>Nano Letters</i> , 2016 , 16, 6792-6796	11.5	19
196	Probing transverse magnetic anisotropy by electronic transport through a single-molecule magnet. <i>Physical Review B</i> , 2015 , 91,	3.3	21
195	Observing magnetic anisotropy in electronic transport through individual single-molecule magnets. Journal of Physics Condensed Matter, 2015 , 27, 113202	1.8	19
194	Electric-Field Control of Interfering Transport Pathways in a Single-Molecule Anthraquinone Transistor. <i>Nano Letters</i> , 2015 , 15, 5569-73	11.5	50
193	Photocurrent generation with two-dimensional van der Waals semiconductors. <i>Chemical Society Reviews</i> , 2015 , 44, 3691-718	58.5	608
192	Kondo effect in a neutral and stable all organic radical single molecule break junction. <i>Nano Letters</i> , 2015 , 15, 3109-14	11.5	93
191	Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. <i>2D Materials</i> , 2015 , 2, 015006	5.9	104
190	TiS3 transistors with tailored morphology and electrical properties. <i>Advanced Materials</i> , 2015 , 27, 2595-	60 ₁ 1	144

189	Pick-up and drop transfer of diamond nanosheets. <i>Nanotechnology</i> , 2015 , 26, 125706	3.4	8
188	Single-photon emission from localized excitons in an atomically thin semiconductor. <i>Optica</i> , 2015 , 2, 347	8.6	290
187	Observing the semiconducting band-gap alignment of MoS2 layers of different atomic thicknesses using a MoS2/SiO2/Si heterojunction tunnel diode. <i>Applied Physics Letters</i> , 2015 , 107, 053101	3.4	7
186	Temperature-Dependent Raman Spectroscopy of Titanium Trisulfide (TiS3) Nanoribbons and Nanosheets. <i>ACS Applied Materials & ACS ACS Applied Materials & ACS Applied Materials & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	72
185	Superconducting molybdenum-rhenium electrodes for single-molecule transport studies. <i>Applied Physics Letters</i> , 2015 , 106, 222602	3.4	6
184	High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds. <i>Nature Communications</i> , 2015 , 6, 8195	17.4	99
183	Gate-tunable diode and photovoltaic effect in an organic-2D layered material p-n junction. <i>Nanoscale</i> , 2015 , 7, 15442-9	7.7	72
182	Gate Controlled Photocurrent Generation Mechanisms in High-Gain InBelPhototransistors. <i>Nano Letters</i> , 2015 , 15, 7853-8	11.5	248
181	Mechanics of freely-suspended ultrathin layered materials. <i>Annalen Der Physik</i> , 2015 , 527, 27-44	2.6	112
180	Single-molecule transistors. <i>Chemical Society Reviews</i> , 2015 , 44, 902-19	58.5	214
179	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. <i>Nanoscale</i> , 2015 , 7, 4598-810	7.7	2015
178	Electron-vibron coupling effects on electron transport via a single-molecule magnet. <i>Physical Review B</i> , 2015 , 91,	3.3	10
177	Image effects in transport at metal-molecule interfaces. <i>Journal of Chemical Physics</i> , 2015 , 143, 174106	3.9	9
176	High-quality-factor tantalum oxide nanomechanical resonators by laser oxidation of TaSe2. <i>Nano Research</i> , 2015 , 8, 2842-2849	10	24
175	Single-Molecule Spin Switch Based on Voltage-Triggered Distortion of the Coordination Sphere. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 13425-30	16.4	106
174	Single-Molecule Break Junctions Based on a Perylene-Diimide Cyano-Functionalized (PDI8-CN2) Derivative. <i>Nanoscale Research Letters</i> , 2015 , 10, 1011	5	10
173	Electrical properties and mechanical stability of anchoring groups for single-molecule electronics. Beilstein Journal of Nanotechnology, 2015 , 6, 1558-67	3	49
172	Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy. <i>Beilstein Journal of Nanotechnology</i> , 2015 , 6, 2477-2484	3	7

(2014-2015)

171	Tracking molecular resonance forms of donor-acceptor push-pull molecules by single-molecule conductance experiments. <i>Nature Communications</i> , 2015 , 6, 10233	17.4	30
170	Single-Molecule Resonant Tunneling Diode. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 5697-5702	3.8	35
169	Environmental instability of few-layer black phosphorus. 2D Materials, 2015, 2, 011002	5.9	683
168	Spin switching in electronic devices based on 2D assemblies of spin-crossover nanoparticles. <i>Advanced Materials</i> , 2015 , 27, 1288-93	24	85
167	Folded MoS2 layers with reduced interlayer coupling. <i>Nano Research</i> , 2014 , 7, 572-578	10	55
166	The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. <i>Nano Research</i> , 2014 , 7, 561-571	10	392
165	Franck-Condon blockade in a single-molecule transistor. <i>Nano Letters</i> , 2014 , 14, 3191-6	11.5	82
164	Fabrication of hybrid molecular devices using multi-layer graphene break junctions. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 474205	1.8	13
163	Time-domain response of atomically thin MoS2 nanomechanical resonators. <i>Applied Physics Letters</i> , 2014 , 105, 041911	3.4	30
162	A comprehensive study of extended tetrathiafulvalene cruciform molecules for molecular electronics: synthesis and electrical transport measurements. <i>Journal of the American Chemical Society</i> , 2014 , 136, 16497-507	16.4	46
161	Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. <i>Nano Letters</i> , 2014 , 14, 5846-52	11.5	186
160	Contactless photoconductance study on undoped and doped nanocrystalline diamond films. <i>ACS Applied Materials & District Applied & District Applied Materials & District Applied & Di</i>	9.5	5
159	Large negative differential conductance in single-molecule break junctions. <i>Nature Nanotechnology</i> , 2014 , 9, 830-4	28.7	143
158	Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. <i>Nature Communications</i> , 2014 , 5, 4651	17.4	555
157	Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. <i>Nano Letters</i> , 2014 , 14, 3347-52	11.5	1305
156	Isolation and characterization of few-layer black phosphorus. 2D Materials, 2014, 1, 025001	5.9	1163
155	Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. <i>Science</i> , 2014 , 344, 1377-80	33.3	303
154	Effect of metal complexation on the conductance of single-molecular wires measured at room temperature. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8314-22	16.4	38

153	Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. <i>2D Materials</i> , 2014 , 1, 011002	5.9	986
152	Note: long-range scanning tunneling microscope for the study of nanostructures on insulating substrates. <i>Review of Scientific Instruments</i> , 2014 , 85, 026105	1.7	2
151	Ultrahigh Photoresponse of Few-Layer TiS3 Nanoribbon Transistors. <i>Advanced Optical Materials</i> , 2014 , 2, 641-645	8.1	159
150	Submicrosecond-timescale readout of carbon nanotube mechanical motion. <i>Applied Physics Letters</i> , 2013 , 103, 053121	3.4	8
149	Quantum interference effects at room temperature in OPV-based single-molecule junctions. <i>Nanoscale Research Letters</i> , 2013 , 8, 234	5	44
148	Single-layer MoS(2) mechanical resonators. <i>Advanced Materials</i> , 2013 , 25, 6719-23	24	162
147	Local strain engineering in atomically thin MoS2. Nano Letters, 2013, 13, 5361-6	11.5	802
146	Hydrogen termination of CVD diamond films by high-temperature annealing at atmospheric pressure. <i>Journal of Chemical Physics</i> , 2013 , 138, 234707	3.9	17
145	Stochastic switching of cantilever motion. <i>Nature Communications</i> , 2013 , 4, 2624	17.4	33
144	In situ transmission electron microscopy imaging of electromigration in platinum nanowires. <i>Microscopy and Microanalysis</i> , 2013 , 19 Suppl 5, 43-8	0.5	9
143	Large and tunable photothermoelectric effect in single-layer MoS2. Nano Letters, 2013, 13, 358-63	11.5	480
142	Large tunable image-charge effects in single-molecule junctions. <i>Nature Nanotechnology</i> , 2013 , 8, 282-7	7 28.7	228
141	Signatures of quantum interference effects on charge transport through a single benzene ring. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 3152-5	16.4	170
140	Fast and reliable identification of atomically thin layers of TaSe2 crystals. <i>Nano Research</i> , 2013 , 6, 191-1	9£∂	53
139	Self-sustained oscillations of a torsional SQUID resonator induced by Lorentz-force back-action. <i>Nature Communications</i> , 2013 , 4, 1803	17.4	16
138	Bonding and electronic transport properties of fullerene and fullerene derivatives in break-junction geometries. <i>Small</i> , 2013 , 9, 209-14	11	19
137	A new class of extended tetrathiafulvalene cruciform molecules for molecular electronics with dithiafulvene-4,5-dithiolate anchoring groups. <i>Advanced Materials</i> , 2013 , 25, 405-9	24	22
136	Wide-bandwidth charge sensitivity with a radio-frequency field-effect transistor. <i>Applied Physics Letters</i> , 2013 , 103, 143102	3.4	6

135	Nonlinear dynamics of a microelectromechanical oscillator with delayed feedback. <i>Physical Review B</i> , 2013 , 88,	3.3	9
134	Statistical analysis of single-molecule breaking traces. <i>Physica Status Solidi (B): Basic Research</i> , 2013 , 250, 2431-2436	1.3	52
133	Mechanical systems in the quantum regime. <i>Physics Reports</i> , 2012 , 511, 273-335	27.7	331
132	Current-induced nanogap formation and graphitization in boron-doped diamond films. <i>Applied Physics Letters</i> , 2012 , 101, 193106	3.4	2
131	Quantum dots at room temperature carved out from few-layer graphene. Nano Letters, 2012, 12, 6096-	1005	67
130	Elastic properties of freely suspended MoS2 nanosheets. <i>Advanced Materials</i> , 2012 , 24, 772-5	24	725
129	Modal interactions of flexural and torsional vibrations in a microcantilever. <i>Ultramicroscopy</i> , 2012 , 120, 41-7	3.1	15
128	Direct observation of magnetic anisotropy in an individual Fe4 single-molecule magnet. <i>Physical Review Letters</i> , 2012 , 109, 147203	7.4	7 2
127	Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2. <i>Nanoscale Research Letters</i> , 2012 , 7, 233	5	121
126	Mechanical properties of freely suspended atomically thin dielectric layers of mica. <i>Nano Research</i> , 2012 , 5, 550-557	10	70
125	Fast and efficient photodetection in nanoscale quantum-dot junctions. <i>Nano Letters</i> , 2012 , 12, 5740-3	11.5	47
124	Laser-thinning of MoSilon demand generation of a single-layer semiconductor. <i>Nano Letters</i> , 2012 , 12, 3187-92	11.5	47 ¹
123	Strong and tunable mode coupling in carbon nanotube resonators. <i>Physical Review B</i> , 2012 , 86,	3.3	51
122	Coupling carbon nanotube mechanics to a superconducting circuit. Scientific Reports, 2012, 2, 599	4.9	39
121	Strongly coupled modes in a weakly driven micromechanical resonator. <i>Applied Physics Letters</i> , 2012 , 101, 243111	3.4	28
120	Probing the charge of a quantum dot with a nanomechanical resonator. <i>Physical Review B</i> , 2012 , 86,	3.3	43
119	Manipulation of organic polyradicals in a single-molecule transistor. <i>Physical Review B</i> , 2012 , 86,	3.3	19
118	Characterization of Nanometer-Spaced Few-Layer Graphene Electrodes. <i>Graphene</i> , 2012 , 01, 26-29	1.5	24

117	In situ transmission electron microscopy imaging of grain growth in a platinum nanobridge induced by electric current annealing. <i>Nanotechnology</i> , 2011 , 22, 205705	3.4	18
116	Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Letters, 2011 , 11, 4607-11	11.5	263
115	Electrical control over the Fe(II) spin crossover in a single molecule: Theory and experiment. <i>Physical Review B</i> , 2011 , 83,	3.3	152
114	dc SQUIDs as linear displacement detectors for embedded micromechanical resonators. <i>Comptes Rendus Physique</i> , 2011 , 12, 817-825	1.4	1
113	Discrete-time quadrature feedback cooling of a radio-frequency mechanical resonator. <i>Applied Physics Letters</i> , 2011 , 99, 013113	3.4	10
112	High-spin and magnetic anisotropy signatures in three-terminal transport through a single molecule. <i>Synthetic Metals</i> , 2011 , 161, 591-597	3.6	16
111	Charge transport in a zinc-porphyrin single-molecule junction. <i>Beilstein Journal of Nanotechnology</i> , 2011 , 2, 714-9	3	27
110	A statistical approach to inelastic electron tunneling spectroscopy on fullerene-terminated molecules. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 14325-32	3.6	29
109	Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids. <i>Nature Nanotechnology</i> , 2011 , 6, 733-9	28.7	145
108	Room-temperature electrical addressing of a bistable spin-crossover molecular system. <i>Advanced Materials</i> , 2011 , 23, 1545-9	24	286
107	Influence of the chemical structure on the stability and conductance of porphyrin single-molecule junctions. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 11223-6	16.4	52
106	Platinum-nanogaps for single-molecule electronics: room-temperature stability. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 14297-301	3.6	17
105	Looking Ahead: Challenges and Opportunities in Organometallic Chemistry[] <i>Organometallics</i> , 2011 , 30, 7-12	3.8	22
104	Interactions between directly- and parametrically-driven vibration modes in a micromechanical resonator. <i>Physical Review B</i> , 2011 , 84,	3.3	24
103	Q-factor control of a microcantilever by mechanical sideband excitation. <i>Applied Physics Letters</i> , 2011 , 99, 151904	3.4	44
102	A versatile low-temperature setup for the electrical characterization of single-molecule junctions. <i>Review of Scientific Instruments</i> , 2011 , 82, 053907	1.7	37
101	Fabrication of tunable clamped microresonators in silicon (1 1 0). <i>Journal of Micromechanics and Microengineering</i> , 2011 , 21, 075011	2	1
100	Tunable backaction of a DC SQUID on an integrated micromechanical resonator. <i>Physical Review Letters</i> , 2010 , 105, 207203	7.4	27

(2009-2010)

99	Mechanical stiffening, bistability, and bit operations in a microcantilever. <i>Applied Physics Letters</i> , 2010 , 97, 193107	3.4	53
98	Electroluminescence spectra in weakly coupled single-molecule junctions. <i>Physical Review B</i> , 2010 , 81,	3.3	23
97	Some considerations of effects-induced errors in resonant cantilevers with the laser deflection method. <i>Journal of Micromechanics and Microengineering</i> , 2010 , 20, 105027	2	6
96	Sandwich-type gated mechanical break junctions. <i>Nanotechnology</i> , 2010 , 21, 265201	3.4	48
95	Electrical manipulation of spin states in a single electrostatically gated transition-metal complex. <i>Nano Letters</i> , 2010 , 10, 105-10	11.5	145
94	An all-electric single-molecule motor. ACS Nano, 2010 , 4, 6681-6	16.7	52
93	Electric field controlled magnetic anisotropy in a single molecule. <i>Nano Letters</i> , 2010 , 10, 3307-11	11.5	163
92	Nonlinear modal interactions in clamped-clamped mechanical resonators. <i>Physical Review Letters</i> , 2010 , 105, 117205	7.4	157
91	Single electron tunnelling through high-Q single-wall carbon nanotube NEMS resonators. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 2974-2979	1.3	19
90	Conductance switching and vibrational fine structure of a $[2 \times 2]$ Co(II)(4) gridlike single molecule measured in a three-terminal device. <i>Small</i> , 2010 , 6, 174-8	11	46
89	Size-dependent effective Young modulus of silicon nitride cantilevers. <i>Applied Physics Letters</i> , 2009 , 94, 233108	3.4	114
88	Room-temperature stability of Pt nanogaps formed by self-breaking. <i>Applied Physics Letters</i> , 2009 , 94, 123108	3.4	46
87	Effect of laser deflection on resonant cantilever sensors 2009,		2
86	Pumping of vibrational excitations in the coulomb-blockade regime in a suspended carbon nanotube. <i>Physical Review Letters</i> , 2009 , 102, 225501	7.4	63
85	Effect of undercut on the resonant behaviour of silicon nitride cantilevers. <i>Journal of Micromechanics and Microengineering</i> , 2009 , 19, 035003	2	34
84	Strong coupling between single-electron tunneling and nanomechanical motion. <i>Science</i> , 2009 , 325, 11	03373	308
83	Buckling beam micromechanical memory with on-chip readout. <i>Applied Physics Letters</i> , 2009 , 94, 18350	013.4	59
82	Magnetomotive drive and detection of clamped-clamped mechanical resonators in water. <i>Applied Physics Letters</i> , 2009 , 95, 263103	3.4	14

81	Carbon nanotubes as ultrahigh quality factor mechanical resonators. <i>Nano Letters</i> , 2009 , 9, 2547-52	11.5	280
80	Three-terminal electric transport measurements on gold nano-particles combined with ex situ TEM inspection. <i>Nanotechnology</i> , 2009 , 20, 415207	3.4	13
79	Effect of pressure on the Q factor and the resonance frequency of SiN microcantilevers 2009,		1
78	A nanoelectromechanical single-atom switch. <i>Nano Letters</i> , 2009 , 9, 2940-5	11.5	56
77	Motion detection of a micromechanical resonator embedded in a d.c. SQUID. <i>Nature Physics</i> , 2008 , 4, 785-788	16.2	146
76	Fullerene-based anchoring groups for molecular electronics. <i>Journal of the American Chemical Society</i> , 2008 , 130, 13198-9	16.4	249
75	Nanomechanical properties of few-layer graphene membranes. <i>Applied Physics Letters</i> , 2008 , 92, 06311	13.4	302
74	Vibrational excitations in weakly coupled single-molecule junctions: a computational analysis. <i>ACS Nano</i> , 2008 , 2, 1445-51	16.7	52
73	Single-molecule transport in three-terminal devices. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 374	128	66
72	Efficient readout of micromechanical resonator arrays in ambient conditions. <i>Applied Physics Letters</i> , 2008 , 93, 234106	3.4	12
71	Nanoelectromechanics of suspended carbon nanotubes. <i>New Journal of Physics</i> , 2008 , 10, 095003	2.9	25
70	Self-detecting gate-tunable nanotube paddle resonators. <i>Applied Physics Letters</i> , 2008 , 93, 111909	3.4	11
69	Charge transport and single-electron effects in nanoscale systems. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 1455-1470	1.3	67
68	Lithographic mechanical break junctions for single-molecule measurements in vacuum: possibilities and limitations. <i>New Journal of Physics</i> , 2008 , 10, 065008	2.9	111
67	Electronic excitations of a single molecule contacted in a three-terminal configuration. <i>Nano Letters</i> , 2007 , 7, 3336-42	11.5	115
66	Self-breaking in planar few-atom Au constrictions for nanometer-spaced electrodes. <i>Applied Physics Letters</i> , 2007 , 90, 133109	3.4	83
65	Piezoresistance of suspended InAs/AlGaSb heterostructure nanobeam. <i>Journal of Crystal Growth</i> , 2007 , 301-302, 897-901	1.6	1
64	Modelling suspended carbon nanotube resonators. <i>Physica Status Solidi (B): Basic Research</i> , 2007 , 244, 4252-4256	1.3	19

(2004-2007)

63	Suspended carbon nanotube double quantum dots. <i>Physica Status Solidi (B): Basic Research</i> , 2007 , 244, 4184-4187	1.3	1
62	Double quantum dots in suspended carbon nanotubes. <i>Journal of Physics: Conference Series</i> , 2007 , 92, 012037	0.3	
61	In situ imaging of electromigration-induced nanogap formation by transmission electron microscopy. <i>Applied Physics Letters</i> , 2007 , 91, 072107	3.4	74
60	Charge transport in three-terminal molecular junctions incorporating sulfur-end-functionalized tercyclohexylidene spacers. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 2540-2	16.4	19
59	Electron transport through single Mn12 molecular magnets. <i>Physical Review Letters</i> , 2006 , 96, 206801	7.4	418
58	Molecular three-terminal devices: fabrication and measurements. <i>Faraday Discussions</i> , 2006 , 131, 347-56; discussion 393-402	3.6	88
57	In-chain tunneling through charge-density-wave nanoconstrictions and break junctions. <i>Physical Review Letters</i> , 2006 , 96, 096402	7.4	13
56	Tunneling in suspended carbon nanotubes assisted by longitudinal phonons. <i>Physical Review Letters</i> , 2006 , 96, 026801	7.4	212
55	Quantum dots in carbon nanotubes. Semiconductor Science and Technology, 2006, 21, S52-S63	1.8	38
54	Kondo effect in the presence of magnetic impurities. <i>Physical Review Letters</i> , 2006 , 96, 017205	7.4	112
53	Temperature Dependence of Three-Terminal Molecular Junctions with Sulfur End-Functionalized Tercyclohexylidenes. <i>Nano Letters</i> , 2006 , 6, 1031-1035	11.5	105
52	Bending-mode vibration of a suspended nanotube resonator. <i>Nano Letters</i> , 2006 , 6, 2904-8	11.5	157
51	Electromigrated molecular junctions. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 3408-3412	1.3	25
50	Electronic excitation spectrum of metallic carbon nanotubes. <i>Physical Review B</i> , 2005 , 71,	3.3	85
49	Coupling between electronic transport and longitudinal phonons in suspended nanotubes. <i>New Journal of Physics</i> , 2005 , 7, 243-243	2.9	28
48	Orbital Kondo effect in carbon nanotubes. <i>Nature</i> , 2005 , 434, 484-8	50.4	315
47	Electronic transport spectroscopy of carbon nanotubes in a magnetic field. <i>Physical Review Letters</i> , 2005 , 94, 156802	7.4	81
46	Crossover from two-dimensional to one-dimensional collective pinning in NbSe3. <i>Physical Review B</i> , 2004 , 69,	3.3	16

45	Electron-hole symmetry in a semiconducting carbon nanotube quantum dot. <i>Nature</i> , 2004 , 429, 389-92	50.4	199
44	One-dimensional conduction in charge-density-wave nanowires. <i>Physical Review Letters</i> , 2004 , 93, 1766	0 7 .4	116
43	Direct observation of single-molecule magnets organized on gold surfaces. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 1645-8	16.4	173
42	Carbon nanotubes as nanoelectromechanical systems. <i>Physical Review B</i> , 2003 , 67,	3.3	178
41	Planar nanocontacts with atomically controlled separation. <i>Applied Physics Letters</i> , 2003 , 83, 3782-3784	3.4	26
40	Nanometer-spaced electrodes with calibrated separation. <i>Applied Physics Letters</i> , 2002 , 80, 321-323	3.4	90
39	Quantum phase transitions and vortex dynamics in superconducting networks. <i>Physics Reports</i> , 2001 , 355, 235-334	27.7	371
38	Negative resistance and local charge-density-wave dynamics. <i>Physical Review Letters</i> , 2001 , 87, 126401	7.4	25
37	Electric-field distribution near current contacts of anisotropic materials. <i>Physical Review B</i> , 2001 , 65,	3.3	7
36	Tunable charge-density wave transport in a current-effect transistor. <i>Physical Review Letters</i> , 2000 , 84, 534-7	7.4	30
35	Charge-density-wave current conversion in submicron NbSe3 wires. <i>Physical Review Letters</i> , 2000 , 84, 538-41	7.4	25
34	Lithographically patterned wires of the charge-density-wave conductor Rb0.30MoO3. <i>Journal of Applied Physics</i> , 1999 , 86, 4440-4445	2.5	7
33	Sliding charge-density-wave transport in micron-sized wires of Rb0.30MoO3. <i>Physical Review B</i> , 1999 , 60, 5287-5294	3.3	17
32	Epitaxial film growth of the charge-density-wave conductor Rb0.30MoO3 on SrTiO3(001). <i>Physical Review B</i> , 1998 , 57, 12530-12535	3.3	8
31	Interactions of topological kinks in two coupled rings of nonlinear oscillators. <i>Physical Review B</i> , 1998 , 58, 8749-8754	3.3	2
30	Resonances of dynamical checkerboard states in Josephson arrays with self-inductance. <i>Physical Review B</i> , 1997 , 55, R11989-R11992	3.3	18
29	Thin films of the charge-density-wave oxide Rb0.30MoO3 by pulsed-laser deposition. <i>Physical Review B</i> , 1997 , 55, 4817-4824	3.3	14
28	Discreteness-induced resonances and ac voltage amplitudes in long one-dimensional Josephson junction arrays. <i>Journal of Applied Physics</i> , 1997 , 82, 4661-4668	2.5	16

27	Dynamics of circular arrays of Josephson junctions and the discrete sine-Gordon equation. <i>Physica D: Nonlinear Phenomena</i> , 1996 , 97, 429-470	3.3	112
26	Resonance splitting in discrete planar arrays of Josephson junctions. <i>Journal of Applied Physics</i> , 1996 , 79, 7864-7870	2.5	13
25	Thin-film growth of the charge-density-wave oxide Rb0.30MoO3. <i>Applied Physics Letters</i> , 1996 , 68, 3823	3- <u>3</u> .825	31
24	Self-field effects on flux flow in two-dimensional arrays of Nb Josephson junctions. <i>Physical Review B</i> , 1996 , 54, 6568-6575	3.3	5
23	Quantum phase transitions in two dimensions: Experiments in Josephson-junction arrays. <i>Physical Review B</i> , 1996 , 54, 10081-10093	3.3	119
22	Kink propagation in a highly discrete system: Observation of phase locking to linear waves. <i>Physical Review Letters</i> , 1995 , 74, 174-177	7.4	96
21	Whirling modes and parametric instabilities in the discrete Sine-Gordon equation: Experimental tests in Josephson rings. <i>Physical Review Letters</i> , 1995 , 74, 379-382	7.4	56
20	Eck peak in underdamped discrete superconducting vortex flow devices. <i>Journal of Applied Physics</i> , 1994 , 76, 7606-7612	2.5	18
19	Dynamics of row-switched states in Josephson-junction arrays. <i>Physical Review B</i> , 1994 , 50, 9380-9386	3.3	14
18	Vortices in two-dimensional superconducting weakly coupled wire networks. <i>Physical Review B</i> , 1994 , 50, 340-350	3.3	32
17	Fiske modes in one-dimensional parallel Josephson-junction arrays. <i>Physical Review B</i> , 1994 , 49, 12945-	13952	30
16	One-dimensional parallel Josephson-junction arrays as a tool for diagnostics. <i>Applied Physics Letters</i> , 1994 , 65, 2102-2104	3.4	22
15	Vortices trapped in discrete Josephson rings. <i>Physica B: Condensed Matter</i> , 1994 , 203, 490-496	2.8	2
14	Influence of induced magnetic fields on the static properties of one-dimensional parallel Josephson-junction arrays. <i>Physical Review B</i> , 1994 , 49, 10009-10012	3.3	18
13	Influence of induced magnetic fields on Shapiro steps in Josephson-junction arrays. <i>Physical Review B</i> , 1994 , 50, 9387-9396	3.3	15
12	Influence of induced magnetic fields on the static properties of Josephson-junction arrays. <i>Physical Review B</i> , 1993 , 47, 5219-5229	3.3	115
11	Vortex dynamics in two-dimensional underdamped, classical Josephson-junction arrays. <i>Physical Review B</i> , 1993 , 47, 295-304	3.3	43
10	Superconductor-to-Insulator Transitions in Non and Fully Frustrated Josephson-Junction Arrays. <i>Europhysics Letters</i> , 1992 , 19, 541-546	1.6	48

9	Ballistic Vortices in Josephson-Junction Arrays. Europhysics Letters, 1992, 18, 343-348	1.6	60	
8	Field-induced superconductor-to-insulator transitions in Josephson-junction arrays. <i>Physical Review Letters</i> , 1992 , 69, 2971-2974	7.4	155	
7	Phase transition of frustrated two-dimensional Josephson junction arrays. <i>Journal of Low Temperature Physics</i> , 1991 , 82, 67-92	1.3	48	
6	Phenomenological model of vortex dynamics in arrays of Josephson junctions. <i>Physical Review B</i> , 1991 , 43, 10218-10228	3.3	47	
5	Dynamics of vortices in underdamped Josephson-junction arrays. <i>Physical Review Letters</i> , 1991 , 66, 253	31 7 2453	4 71	
4	The superconducting transition of 2-D Josephson-junction arrays in a small perpendicular magnetic field. <i>Journal of Low Temperature Physics</i> , 1990 , 79, 289-310	1.3	71	
3	Phase fluctuations in two-dimensional superconducting weakly coupled wire networks. <i>Physical Review B</i> , 1990 , 42, 2647-2650	3.3	15	
2	Coherent phase slip in arrays of underdamped Josephson tunnel junctions. <i>Physical Review B</i> , 1988 , 38, 5154-5157	3.3	37	
1	Phase transitions of Josephson-tunnel-junction arrays at zero and full frustration. <i>Physical Review B</i>	3.3	83	