Takao Okazaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4973843/publications.pdf

Version: 2024-02-01

840776 752698 38 436 11 20 citations h-index g-index papers 39 39 39 569 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Rigid Molecular Tripod with an Adamantane Framework and Thiol Legs. Synthesis and Observation of an Ordered Monolayer on Au(111). Journal of Organic Chemistry, 2006, 71, 1362-1369.	3.2	90
2	Ideal Redox Behavior of the High-Density Self-Assembled Monolayer of a Molecular Tripod on a Au(111) Surface with a Terminal Ferrocene Group. Langmuir, 2013, 29, 4275-4282.	3.5	49
3	4-(Pentafluorosulfanyl)benzenediazonium Tetrafluoroborate: A Versatile Launch Pad for the Synthesis of Aromatic SF5Compounds via Cross Coupling, Azo Coupling, Homocoupling, Dediazoniation, and Click Chemistry. European Journal of Organic Chemistry, 2014, 2014, 1630-1644.	2.4	31
4	Substituent Effects and Charge Delocalization Mode in Chrysenium, Benzo[c]phenanthrenium, and Benzo[g]chrysenium Cations:Â A Stable Ion and Electrophilic Substitution Study. Journal of Organic Chemistry, 2001, 66, 780-788.	3.2	28
5	First Examples of Stable Arenium Ions from Large Methylene-Bridged Polycyclic Aromatic Hydrocarbons (PAHs). Directive Effects and Charge Delocalization Mode. Journal of Organic Chemistry, 2001, 66, 3977-3983.	3.2	19
6	Transannular π–π interactions in janusenes and in related rigid systems with cofacial aromatic rings; gauging aromaticity in the hydrocarbons and in model carbocations; a DFT study. Organic and Biomolecular Chemistry, 2006, 4, 3085-3095.	2.8	18
7	derivatives, 1- and 3-methoxy-9,10-dihydro-BaP-7(8H)-one, as well as the proximate carcinogen BaP 7,8-dihydrodiol and its dibenzoate, combined with a comparative DNA binding study of regioisomeric (1-, 4-, 2-) pyrenylcarbinolsElectronic supplementary information (ESI) available: Selected NMR spectra (Fig. S1 and Charts S1-S10) and DFT computed energies for carbocations (Table S1). See	2.8	15
	Electrophilic and oxidative chemistry of pyrene and its non-alternant isomers: theoretical (DFT,) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 47
8	(dicyclopenta[ef,kl]heptalene) and dicyclohepta[ed,gh]pentalene. Organic and Biomolecular Chemistry, 2004, 2, 2214-2219.	2.8	15
9	Intermediates of Halogen Addition to Phenylethynes and Protonation of Phenylethynyl Halides. Open Halovinyl Cations, Bridged Halonium, or Phenyl-Bridged Ions:Â A Substituent Effect Study by DFT and GIAO-DFT. Journal of Organic Chemistry, 2006, 71, 9643-9650.	3.2	12
10	Electrochemistry of the Self-Assembled Monolayers of Dyads Consisting of Tripod-Shaped Trithiol and Bithiophene on Gold. Molecules, 2014, 19, 15298-15313.	3.8	12
11	Novel Examples of Three-Dimensional Aromaticity:  1,3-Dehydro-silaadamantane Dications. A Theoretical (DFT, GIAO NMR, NICS) Study. Journal of Organic Chemistry, 2002, 67, 8721-8725.	3.2	11
12	Probing the Intermediates of Halogen Addition to Alkynes:Â Bridged Halonium versus Open Halovinyl Cation; A Theoretical Study. Journal of Organic Chemistry, 2005, 70, 9139-9146.	3.2	11
13	Stable ion and electrophilic chemistry of fluoranthene-PAHsElectronic supplementary information (ESI) available: Table S1, NMR spectra and results of calculations. See http://www.rsc.org/suppdata/p2/b1/b108025n/. Perkin Transactions II RSC, 2002, , 621-629.	1.1	10
14	Stableâ€ion NMR and GIAOâ€DFT Study of the Carbocations from Benzofluorenes and Dibenzofluorenes; Synthesis of Nitro Derivatives; Mutagenicity Assay and Xâ€ray Analysis. European Journal of Organic Chemistry, 2008, 2008, 1740-1752.	2.4	9
15	Stable Ion and Electrophilic Substitution (Nitration and Bromination) Study of A-Ring Substituted Phenanthrenes: Novel Carbocations and Substituted Derivatives; NMR, X-ray Analysis, and Comparative DNA Binding. European Journal of Organic Chemistry, 2007, 2007, 487-497.	2.4	8
16	NMR and DFT studies on persistent carbocations derived from benzo[$\langle i \rangle k \langle i \rangle$] xanthene, dibenzo[$\langle i \rangle d \langle i \rangle$, $\langle i \rangle d \langle i \rangle$ $\hat{a} \in 2$]benzo[$1,2 - \langle i \rangle b \langle i \rangle$; $\hat{a} \in 2$]benzo[$1,2 - \langle i \rangle b \langle i \rangle$; $\hat{a} \in 2$]difuran in superacidic media. Journal of Physical Organic Chemistry, 2016, 29, 107-111.	1.9	8
17	Î ² -Silyl-Substituted Silaadamantyl, Silabicyclo[2.2.2]octyl, Silanorbornyl, and 1-Silacyclohexyl Cations. A Theoretical (DFT and GIAO NMR) Study. Journal of Organic Chemistry, 2003, 68, 1827-1833.	3.2	7
18	Theoretical (DFT, GIAO–NMR, NICS) study of carbocations (M+H)+, dications (M2+) and dianions (M2â^') from dihydro-dicyclopenta[ef,kl]heptalene (dihydro-azupyrene), dihydro-dicyclohepta[ed,gh]pentalene, and related bridged [14]annulenes. Organic and Biomolecular Chemistry, 2005, 3, 286-294.	2.8	7

#	Article	IF	CITATIONS
19	Persistent Oxidation Dications from Twisted Fluoranthenes, Benzo[k]fluoranthene and Dimethyldibenzo[j.l]fluoranthene: Charge Delocalization Mode, Tropicity, and Formation of Novel 8.8â€~Bifluoranthenvls. An NMR and Theoretical Study, Journal of Organic Chemistry, 2001, 66, 8701-8708. Protonation studies on epimeric homoaliylic adamantylideneadamantyl alconols,	3.2	6
20	4-methyleneadamantylideneadamantane, adamantylideneadamantane (Adî€Ad) and sesquihomoadamantene, and reaction of Adî€Ad and sesquihomoadamantene with NO2+BF4– and PhI(OH)OTs: a stable-ion NMR and theoretical (GIAO-NMR) studyElectronic supplementary information (ESI) available: representative 1D-NMR spectra and tables of cartesian coordinates. See	1.1	6
21	Ettn://www.rsc.org/suppdata/p2/b2/b201660e/ Perkin Transactions II RSC. 2002 1105-1111 Synthesis and Stablea eton Studies of Regiolsomeric Acetylnitropyrenes and Nitropyrenyl Carbinols and GIAOâ€DFT Study of Nitro Substituent Effects on αâ€Pyrenyl Carbocations. European Journal of Organic Chemistry, 2008, 2008, 6093-6105.	2.4	6
22	A Computational (DFT, MP2) and GIAO NMR Study of Substituent Effects in Benzenediazonium Monoand Dications. European Journal of Organic Chemistry, 2011, 2011, 1771-1775.	2.4	6
23	Electrophilic reactivity and π-complexation studies in 1,8-naphthylene-bridged [3.2]paracyclophane with a cyclobutane calliper. Perkin Transactions II RSC, 2000, , 2347-2350.	1.1	5
24	Selfâ€Sensitized Photooxygenation of a C ₆₀ â€"Cycloheptatriene Dyad to Form Norcaradieneâ€Derived Endoperoxides. European Journal of Organic Chemistry, 2010, 2010, 3257-3264.	2.4	5
25	NMR and DFT Study on Onium Ions Derived from Substituted Fluoranthenes and Benzo[<i>k</i>]fluoranthenes. Bulletin of the Chemical Society of Japan, 2013, 86, 464-471.	3.2	5
26	Electron-Transfer Properties of Phenyleneethynylene Linkers Bound to Gold via a Self-Assembled Monolayer of Molecular Tripod. Molecules, 2018, 23, 2893.	3.8	5
27	Generation and NMR studies of stable cations derived from monothia[3.2]- and dithia[3.3]metacyclophanes. Perkin Transactions II RSC, 2001, , 745-748.	1.1	4
28	R(Ar)O–N2+ vs. R(Ar)–N2O+: Are Alkoxy-(Aryloxy-)diazonium Ions or Alkyl-(Aryl-)N-nitroso-onium Ions Formed in the Gas-Phase Reactions of N2O with H+, Me+, Ph+, PhCH2+, Tr+ and PhCO+?. European Journal of Organic Chemistry, 2007, 2007, 70-77.	2.4	4
29	Superacidâ€Catalyzed Dimerization/Cyclization of Isopropenylâ€PAHs – Novel Pathways to PAH Dimers, Phenalenes and Their Stable Carbocations. European Journal of Organic Chemistry, 2008, 2008, 3700-3708.	2.4	4
30	Stableâ€ion NMR Spectroscopy and GIAOâ€DFT Study of Carbocations Derived from Multibridged [3 <i>_n</i>) Cyclophanes. European Journal of Organic Chemistry, 2009, 2009, 4451-4457.	2.4	4
31	Experimental NNR and DFT Studies of Persistent Carbocations Derived from Hetero-Polycyclic Aromatic Hydrocarbons Containing Oxygen Atom: Dibenzo[<i>b</i> b aphtho[1,2- <i>d</i> furan, Benzo[<i>b</i> aphtho[2,3- <i>d</i> furan, Benzo[<i>b</i> aphtho[2,3- <i>d</i> aphtho[2,1- <i d="">aphtho[2,1-<i d="">aphtho[2,1-<<i d="">aphtho[2,1-<<i d="">aphtho[2,1-<<i d="">aphtho[2,1-<<i d="">aphtho[2,1-<<i d="">aphtho[2,1-< </i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	3.2	4
32	Solvolysis of 2-adamantyl p-toluenesulfonate in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate. Tetrahedron Letters, 2015, 56, 6066-6068.	1.4	4
33	Tuning the coverage of self-assembled monolayer by introducing bulky substituents onto rigid adamantane tripod. Arkivoc, 2018, 2018, 131-144.	0.5	4
34	Cationic Intermediates for Electrophilic Reactions from 9,9-Dimethyl-9H-9- silafluorene. Current Organic Chemistry, 2016, 20, 3014-3021.	1.6	2
35	Effect of solvation of ionic liquid on Brønsted acidâ€catalyzed aldol cyclotrimerization of indanones and related cyclic ketones. Journal of Physical Organic Chemistry, 2018, 31, e3887.	1.9	1
36	Charge delocalization mode and change in aromaticity of protonated 7â€phenylbenzo[k]fluoranthenes studied by experimental observation and DFT calculations. Journal of Physical Organic Chemistry, 2019, 32, e3998.	1.9	1

#	Article	IF	CITATIONS
37	BrÃ,nsted acidâ€catalyzed aldol cyclotrimerization of 1â€indanones in ionic liquid: An experimental and DFT study of substituent effect. Journal of Physical Organic Chemistry, 2021, 34, .	1.9	O
38	Phenyl(triazolyl)carbene revisited: Unique role of triazolyl group on carbene chemistry. Journal of Physical Organic Chemistry, 2021, 34, e4187.	1.9	0