
Christo S Sevov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4973805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synergistic Catalyst–Mediator Pairings for Electroreductive Cross-Electrophile Coupling Reactions. ACS Catalysis, 2022, 12, 1161-1166.	11.2	24
2	Catalyst-controlled functionalization of carboxylic acids by electrooxidation of self-assembled carboxyl monolayers. Nature Communications, 2022, 13, 1319.	12.8	19
3	Controlling Ni redox states by dynamic ligand exchange for electroreductive Csp3–Csp2 coupling. Science, 2022, 376, 410-416.	12.6	74
4	Mediator-Enabled Electrocatalysis with Ligandless Copper for Anaerobic Chan–Lam Coupling Reactions. Journal of the American Chemical Society, 2021, 143, 6257-6265.	13.7	44
5	General C(sp ²)–C(sp ³) Cross-Electrophile Coupling Reactions Enabled by Overcharge Protection of Homogeneous Electrocatalysts. Journal of the American Chemical Society, 2020, 142, 5884-5893.	13.7	103
6	Direct and Scalable Electroreduction of Triphenylphosphine Oxide to Triphenylphosphine. Journal of the American Chemical Society, 2020, 142, 3024-3031.	13.7	72
7	An Electrochemically Promoted, Nickel-Catalyzed Mizoroki–Heck Reaction. ACS Catalysis, 2019, 9, 7197-7203.	11.2	45
8	Effect of the Backbone Tether on the Electrochemical Properties of Soluble Cyclopropenium Redox-Active Polymers. Macromolecules, 2018, 51, 3539-3546.	4.8	43
9	High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries. ACS Central Science, 2018, 4, 189-196.	11.3	134
10	Macromolecular Design Strategies for Preventing Activeâ€Material Crossover in Nonâ€Aqueous Allâ€Organic Redoxâ€Flow Batteries. Angewandte Chemie - International Edition, 2017, 56, 1595-1599.	13.8	116
11	Physical Organic Approach to Persistent, Cyclable, Low-Potential Electrolytes for Flow Battery Applications. Journal of the American Chemical Society, 2017, 139, 2924-2927.	13.7	165
12	Macromolecular Design Strategies for Preventing Activeâ€Material Crossover in Nonâ€Aqueous Allâ€Organic Redoxâ€Flow Batteries. Angewandte Chemie, 2017, 129, 1617-1621.	2.0	25
13	Low-Potential Pyridinium Anolyte for Aqueous Redox Flow Batteries. Journal of Physical Chemistry C, 2017, 121, 24376-24380.	3.1	44
14	Multielectron Cycling of a Low-Potential Anolyte in Alkali Metal Electrolytes for Nonaqueous Redox Flow Batteries. ACS Energy Letters, 2017, 2, 2430-2435.	17.4	72
15	Cyclopropenium Salts as Cyclable, Highâ€Potential Catholytes in Nonaqueous Media. Advanced Energy Materials, 2017, 7, 1602027.	19.5	94
16	Mechanism-Based Development of a Low-Potential, Soluble, and Cyclable Multielectron Anolyte for Nonaqueous Redox Flow Batteries. Journal of the American Chemical Society, 2016, 138, 15378-15384.	13.7	99
17	Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries. Journal of the American Chemical Society, 2015, 137, 14465-14472.	13.7	191
18	All-Organic Storage Solids and Redox Shuttles for Redox-Targeting Flow Batteries. ACS Energy Letters, 0, , 1271-1279.	17.4	27