Deepa Bhartiya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4973589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Very small embryonic-like stem cells (VSELs) regenerate whereas mesenchymal stromal cells (MSCs) rejuvenate diseased reproductive tissues. Stem Cell Reviews and Reports, 2022, 18, 1718-1727.	1.7	25
2	Mice Uterine Stem Cells are Affected by Neonatal Endocrine Disruption & Initiate Uteropathies in Adult Life Independent of Circulatory Ovarian Hormones. Stem Cell Reviews and Reports, 2022, 18, 1686-1701.	1.7	11
3	Additional evidence to support OCT-4 positive VSELs and EnSCs as the elusive tissue-resident stem/progenitor cells in adult mice uterus. Stem Cell Research and Therapy, 2022, 13, 60.	2.4	9
4	Aged mice ovaries harbor stem cells and germ cell nests but fail to form follicles. Journal of Ovarian Research, 2022, 15, 37.	1.3	13
5	Molecular Insights into Endometrial Cancer in Mice. Stem Cell Reviews and Reports, 2022, 18, 1702-1717.	1.7	7
6	Tissue-resident stem/progenitor cells endowed with broader germ layer specification potential in normal and cancerous tissues. Stem Cell Reviews and Reports, 2022, , 1.	1.7	0
7	GFP Tagged VSELs Help Delineate Novel Stem Cells Biology in Multiple Adult Tissues. Stem Cell Reviews and Reports, 2022, 18, 1603-1613.	1.7	5
8	Testicular cancer in mice: interplay between stem cells and endocrine insults. Stem Cell Research and Therapy, 2022, 13, .	2.4	9
9	Dysfunctional Ovarian Stem Cells Due to Neonatal Endocrine Disruption Result in PCOS and Ovarian Insufficiency in Adult Mice. Stem Cell Reviews and Reports, 2022, 18, 2912-2927.	1.7	7
10	Cancer Initiates Due to Excessive Self-Renewal and Blocked Differentiation of Tissue-Resident, OCT-4 Positive VSELs. Stem Cell Reviews and Reports, 2022, 18, 3112-3114.	1.7	4
11	Pluripotent Stem (VSELs) and Progenitor (EnSCs) Cells Exist in Adult Mouse Uterus and Show Cyclic Changes Across Estrus Cycle. Reproductive Sciences, 2021, 28, 278-290.	1.1	24
12	Testicular Stem Cell Dysfunction Due to Environmental Insults Could Be Responsible for Deteriorating Reproductive Health of Men. Reproductive Sciences, 2021, 28, 649-658.	1.1	6
13	Adult tissue-resident stem cells—fact or fiction?. Stem Cell Research and Therapy, 2021, 12, 73.	2.4	16
14	Fertility restoration in azoospermic cancer survivors from testicular VSELs that survive oncotherapy upon transplanting MSCs. Human Reproduction Update, 2021, 27, 619-620.	5.2	3
15	Testicular Stem Cells Survive Oncotherapy. Reproductive Sciences, 2021, 28, 1785-1787.	1.1	0
16	Quest for Pan-Cancer Diagnosis/Prognosis Ends with HrC Test Measuring Oct4A in Peripheral Blood. Stem Cell Reviews and Reports, 2021, 17, 1827-1839.	1.7	6
17	Stem Cells in Adult Mice Ovaries Form Germ Cell Nests, Undergo Meiosis, Neo-oogenesis and Follicle Assembly on Regular Basis During Estrus Cycle. Stem Cell Reviews and Reports, 2021, 17, 1695-1711.	1.7	14
18	Effect of Sonic hedgehog pathway inhibition on PDX1 expression during pancreatic differentiation of human embryonic stem cells. Molecular Biology Reports, 2021, 48, 1615-1623.	1.0	2

#	Article	IF	CITATIONS
19	Two Stem Cell Populations Including VSELs and CSCs Detected in the Pericardium of Adult Mouse Heart. Stem Cell Reviews and Reports, 2021, 17, 685-693.	1.7	4
20	Will Single-Cell RNAseq decipher stem cells biology in normal and cancerous tissues?. Human Reproduction Update, 2021, 27, 421-421.	5.2	14
21	Endogenous, tissue-resident stem/progenitor cells in gonads and bone marrow express FSHR and respond to FSH via FSHR-3. Journal of Ovarian Research, 2021, 14, 145.	1.3	13
22	An overview of FSH-FSHR biology and explaining the existing conundrums. Journal of Ovarian Research, 2021, 14, 144.	1.3	32
23	Mouse Pancreas Stem/Progenitor Cells Get Augmented by Streptozotocin and Regenerate Diabetic Pancreas After Partial Pancreatectomy. Stem Cell Reviews and Reports, 2020, 16, 144-158.	1.7	18
24	Pluripotent very small embryonic-like stem cells co-exist along with spermatogonial stem cells in adult mammalian testis. Human Reproduction Update, 2020, 26, 137-138.	5.2	7
25	Which stem cells will eventually translate to the clinics for treatment of diabetes?. Stem Cell Research and Therapy, 2020, 11, 211.	2.4	4
26	Altered Biology of Testicular VSELs and SSCs by Neonatal Endocrine Disruption Results in Defective Spermatogenesis, Reduced Fertility and Tumor Initiation in Adult Mice. Stem Cell Reviews and Reports, 2020, 16, 893-908.	1.7	24
27	Additional Evidence to Establish Existence of Two Stem Cell Populations Including VSELs and SSCs in Adult Mouse Testes. Stem Cell Reviews and Reports, 2020, 16, 992-1004.	1.7	24
28	Effect of Aging and 5-Fluorouracil Treatment on Bone Marrow Stem Cell Dynamics. Stem Cell Reviews and Reports, 2020, 16, 909-921.	1.7	4
29	Ovary does harbor stem cells - size of the cells matter!. Journal of Ovarian Research, 2020, 13, 39.	1.3	29
30	Direct action of FSH on testicular stem cells. Stem Cell Research and Therapy, 2019, 10, 261.	2.4	9
31	Clinical Translation of Stem Cells for Regenerative Medicine. Circulation Research, 2019, 124, 840-842.	2.0	28
32	Evolving Definition of Adult Stem/Progenitor Cells. Stem Cell Reviews and Reports, 2019, 15, 456-458.	5.6	17
33	Heterogeneity of Stem Cells in theÂOvary. Advances in Experimental Medicine and Biology, 2019, 1169, 213-223.	0.8	6
34	Stem Cells in theÂMammalian Gonads. Advances in Experimental Medicine and Biology, 2019, 1201, 109-123.	0.8	3
35	Improved understanding of very small embryonic-like stem cells in adult mammalian ovary. Human Reproduction, 2018, 33, 978-979.	0.4	9
36	Being Pluripotent, Bone Marrow Very Small Embryonic-Like Stem Cells Rather Than Hematopoietic Stem Cells Have the Potential to Regenerate Other Adult Organs. Stem Cells, 2018, 36, 807-808.	1.4	4

#	Article	IF	CITATIONS
37	Transcriptional activator DOT1L putatively regulates human embryonic stem cell differentiation into the cardiac lineage. Stem Cell Research and Therapy, 2018, 9, 97.	2.4	19
38	The need to revisit the definition of mesenchymal and adult stem cells based on their functional attributes. Stem Cell Research and Therapy, 2018, 9, 78.	2.4	25
39	Dynamics of Bone Marrow VSELs and HSCs in Response to Treatment with Gonadotropin and Steroid Hormones, during Pregnancy and Evidence to Support Their Asymmetric/Symmetric Cell Divisions. Stem Cell Reviews and Reports, 2018, 14, 110-124.	5.6	18
40	Stem Cells and Progenitors in Human Peripheral Blood Get Activated by Extremely Active Resveratrol (XARâ,,¢). Stem Cell Reviews and Reports, 2018, 14, 213-222.	5.6	14
41	Ovarian stem cells—resolving controversies. Journal of Assisted Reproduction and Genetics, 2018, 35, 393-398.	1.2	37
42	Pluripotent Very Small Embryonic-Like Stem Cells in Adult Testes – An Alternate Premise to Explain Testicular Germ Cell Tumors. Stem Cell Reviews and Reports, 2018, 14, 793-800.	5.6	18
43	Gonadotropin and steroidÂhormones regulate pluripotent very small embryonic-like stem cells in adult mouse uterine endometrium. Journal of Ovarian Research, 2018, 11, 83.	1.3	30
44	Will iPS Cells Regenerate or Just Provide Trophic Support to the Diseased Tissues?. Stem Cell Reviews and Reports, 2018, 14, 629-631.	5.6	7
45	Novel Insights into Adult and Cancer Stem Cell Biology. Stem Cells and Development, 2018, 27, 1527-1539.	1.1	42
46	Further characterization of adult sheep ovarian stem cells and their involvement in neo-oogenesis and follicle assembly. Journal of Ovarian Research, 2018, 11, 3.	1.3	42
47	Stem cells survive oncotherapy & can regenerate non-functional gonads: A paradigm shift for oncofertility. Indian Journal of Medical Research, 2018, 148, S38-S49.	0.4	2
48	Mouse Bone Marrow VSELs Exhibit Differentiation into Three Embryonic Germ Lineages and Germ & Hematopoietic Cells in Culture. Stem Cell Reviews and Reports, 2017, 13, 202-216.	5.6	61
49	Do Adult Somatic Cells Undergo Reprogramming or Endogenous Pluripotent Stem Cells get Activated to Account for Plasticity, Regeneration and Cancer Initiation?. Stem Cell Reviews and Reports, 2017, 13, 699-701.	5.6	7
50	Letter to the Editor: Rejuvenate eggs or regenerate ovary?. Molecular and Cellular Endocrinology, 2017, 446, 111-113.	1.6	15
51	Ideal Stem Cell Candidate for Regenerative Medicine: Pluripotent Stem Cells, Adult Stem Cells, or Pluripotent Stem Cells in Adult Organs?. , 2017, , 143-158.		0
52	Genetic and Epigenetic Profiling Reveals EZH2-mediated Down Regulation of OCT-4 Involves NR2F2 during Cardiac Differentiation of Human Embryonic Stem Cells. Scientific Reports, 2017, 7, 13051.	1.6	12
53	Pluripotent Stem Cells in Adult Tissues: Struggling To Be Acknowledged Over Two Decades. Stem Cell Reviews and Reports, 2017, 13, 713-724.	5.6	60
54	Effects of oncotherapy on testicular stem cells and niche. Molecular Human Reproduction, 2017, 23, 654-655.	1.3	19

#	Article	IF	CITATIONS
55	Very small embryonic-like stem cells (VSELs) in adult mouse uterine perimetrium and myometrium. Journal of Ovarian Research, 2017, 10, 29.	1.3	26
56	Making gametes from alternate sources of stem cells: past, present and future. Reproductive Biology and Endocrinology, 2017, 15, 89.	1.4	39
57	Shifting gears from embryonic to very small embryonic-like stem cells for regenerative medicine. Indian Journal of Medical Research, 2017, 146, 15.	0.4	6
58	Evaluating KIND1 human embryonic stem cell-derived pancreatic progenitors to ameliorate streptozotocin-induced diabetes in mice. Indian Journal of Medical Research, 2017, 146, 244.	0.4	2
59	Making gametes from pluripotent stem cells: embryonic stem cells or very small embryonic-like stem cells?. Stem Cell Investigation, 2016, 3, 57-57.	1.3	7
60	Novel Action of FSH on Stem Cells in Adult Mammalian Ovary Induces Postnatal Oogenesis and Primordial Follicle Assembly. Stem Cells International, 2016, 2016, 1-13.	1.2	18
61	An update on endometrial stem cells and progenitors. Human Reproduction Update, 2016, 22, 529-530.	5.2	8
62	Testicular Stem Cells Express Follicle-Stimulating Hormone Receptors and Are Directly Modulated by FSH. Reproductive Sciences, 2016, 23, 1493-1508.	1.1	63
63	Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Human Reproduction Update, 2016, 23, 41-76.	5.2	104
64	Underlying Mechanisms that Restore Spermatogenesis on Transplanting Healthy Niche Cells in Busulphan Treated Mouse Testis. Stem Cell Reviews and Reports, 2016, 12, 682-697.	5.6	82
65	Bioconductive 3D nano-composite constructs with tunable elasticity to initiate stem cell growth and induce bone mineralization. Materials Science and Engineering C, 2016, 69, 700-714.	3.8	13
66	Use of Very Small Embryonic-Like Stem Cells to Avoid Legal, Ethical, and Safety Issues Associated With Oncofertility. JAMA Oncology, 2016, 2, 689.	3.4	14
67	Delineating the effects of 5-fluorouracil and follicle-stimulating hormone on mouse bone marrow stem/progenitor cells. Stem Cell Research and Therapy, 2016, 7, 59.	2.4	51
68	Ubiquitous expression of FSH/LH/hCG receptors, OCT-4, and CD133 in adult organs and cancers reflects novel VSELs biology. Journal of Reproductive Health and Medicine, 2016, 2, 33-36.	0.3	2
69	Do Somatic Cells De-differentiate/Trans-differentiate or VSELs Initiate Cancer and Explain Plasticity in Adult Tissues?. Journal of Cancer Stem Cell Research, 2016, 4, 1.	1.1	5
70	Stem cells to replace or regenerate the diabetic pancreas: Huge potential & existing hurdles. Indian Journal of Medical Research, 2016, 143, 267.	0.4	15
71	VSELs may obviate cryobanking of gonadal tissue in cancer patients for fertility preservation. Journal of Ovarian Research, 2015, 8, 75.	1.3	17
72	Ovarian stem cells are always accompanied by very small embryonic-like stem cells in adult mammalian ovary. Journal of Ovarian Research, 2015, 8, 70.	1.3	28

#	Article	IF	CITATIONS
73	Very small embryonic-like stem cells are involved in pancreatic regeneration and their dysfunction with age may lead to diabetes and cancer. Stem Cell Research and Therapy, 2015, 6, 96.	2.4	29
74	Lineage specific expression of Polycomb Group Proteins in human embryonic stem cells in vitro. Cell Biology International, 2015, 39, 600-610.	1.4	7
75	FSH–FSHR3–stem cells in ovary surface epithelium: basis for adult ovarian biology, failure, aging, and cancer. Reproduction, 2015, 149, R35-R48.	1.1	61
76	Mouse Ovarian Very Small Embryonic-Like Stem Cells Resist Chemotherapy and Retain Ability to Initiate Oocyte-Specific Differentiation. Reproductive Sciences, 2015, 22, 884-903.	1.1	81
77	Chemoablated mouse seminiferous tubular cells enriched for very small embryonic-like stem cells undergo spontaneous spermatogenesis in vitro. Reproductive Biology and Endocrinology, 2015, 13, 33.	1.4	39
78	Very small embryonic-like stem cells are the elusive mouse endometrial stem cells- a pilot study. Journal of Ovarian Research, 2015, 8, 9.	1.3	28
79	Isolation and Characterization of Stem Cells in the Adult Mammalian Ovary. Methods in Molecular Biology, 2015, 1235, 203-229.	0.4	23
80	Stem cells, progenitors & regenerative medicine: A retrospection. Indian Journal of Medical Research, 2015, 141, 154.	0.4	23
81	Intricacies of Pluripotency. Journal of Stem Cells and Regenerative Medicine, 2015, 11, 2-6.	2.2	7
82	VSELs, stem cells or progenitors - A debate. Indian Journal of Medical Research, 2015, 141, 154.	0.4	0
83	Dynamics associated with spontaneous differentiation of ovarian stem cells in vitro. Journal of Ovarian Research, 2014, 7, 25.	1.3	64
84	Making gametes from pluripotent stem cells – a promising role for very small embryonic-like stem cells. Reproductive Biology and Endocrinology, 2014, 12, 114.	1.4	40
85	Very small embryonic-like stem cells are involved in regeneration of mouse pancreas post-pancreatectomy. Stem Cell Research and Therapy, 2014, 5, 106.	2.4	39
86	Polycomb group protein expression during differentiation of human embryonic stem cells into pancreatic lineage in vitro. BMC Cell Biology, 2014, 15, 18.	3.0	25
87	Stem Cells Cloning and Therapeutic Potential. MGM Journal of Medical Sciences, 2014, 1, 134-138.	0.1	0
88	Quiescent Very Small Embryonic-like Stem Cells Resist Oncotherapy and can Restore Spermatogenesis in Germ Cell Depleted Mammalian Testis. Stem Cells and Development, 2013, , 131001102536007.	1.1	10
89	Ovarian stem cells: absence of evidence is not evidence of absence. Journal of Ovarian Research, 2013, 6, 65.	1.3	39
90	Follicle stimulating hormone modulates ovarian stem cells through alternately spliced receptor variant FSH-R3. Journal of Ovarian Research, 2013, 6, 52.	1.3	83

#	Article	IF	CITATIONS
91	Differentiation of human ES cell line KIND-2 to yield tripotent cardiovascular progenitors. In Vitro Cellular and Developmental Biology - Animal, 2013, 49, 82-93.	0.7	12
92	Stimulation of ovarian stem cells by follicle stimulating hormone and basic fibroblast growth factor during cortical tissue culture. Journal of Ovarian Research, 2013, 6, 20.	1.3	62
93	Multipotent to Pluripotent Properties of Adult Stem Cells. Stem Cells International, 2013, 2013, 1-2.	1.2	8
94	Very Small Embryonic-Like Stem Cells: Implications in Reproductive Biology. BioMed Research International, 2013, 2013, 1-10.	0.9	53
95	Are Mesenchymal Cells Indeed Pluripotent Stem Cells or Just Stromal Cells? OCT-4 and VSELs Biology Has Led to Better Understanding. Stem Cells International, 2013, 2013, 1-6.	1.2	50
96	An Overview of Pluripotent Stem Cells. , 2013, , .		5
97	Stem Cells in Reproductive Tissues: From the Basics to Clinics. BioMed Research International, 2013, 2013, 1-2.	0.9	2
98	Neonatal exposure to estrogen affects very small ES-like stem cells (VSELs) leading to various pathologies in adults including cancer. Journal of Cancer Stem Cell Research, 2013, 1, 1.	1.1	4
99	Pluripotent stem cells for cardiac regeneration: overview of recent advances & emerging trends. Indian Journal of Medical Research, 2013, 137, 270-82.	0.4	4
100	Stem Cell Interaction with Somatic Niche May Hold the Key to Fertility Restoration in Cancer Patients. Obstetrics and Gynecology International, 2012, 2012, 1-11.	0.5	27
101	The continued presence of stem cells and oogonia in the adult mammalian ovary. Human Reproduction, 2012, 27, 938-938.	0.4	9
102	Efficient cryopreservation of testicular tissue: effect of age, sample state, and concentration of cryoprotectant. Fertility and Sterility, 2012, 97, 200-208.e1.	0.5	55
103	Very Small Embryonic-Like Stem Cells with Maximum Regenerative Potential Get Discarded During Cord Blood Banking and Bone Marrow Processing for Autologous Stem Cell Therapy. Stem Cells and Development, 2012, 21, 1-6.	1.1	111
104	Gonadotropin treatment augments postnatal oogenesis and primordial follicle assembly in adult mouse ovaries?. Journal of Ovarian Research, 2012, 5, 32.	1.3	63
105	Propagation of Human Embryonic Stem Cells: Role of TGF \hat{I}^2 . , 2012, , 3-9.		0
106	Cellular Origin of Testis-Derived Pluripotent Stem Cells: A Case for Very Small Embryonic-Like Stem Cells. Stem Cells and Development, 2012, 21, 670-674.	1.1	46
107	Pluripotent Very Small Embryonic-Like Stem Cells Get Discarded During Cord Blood and Bone Marrow Processing. Stem Cells and Development, 2012, 21, 2563-2564.	1.1	9
108	<i>Retraction:</i> Detection, Characterization, and Spontaneous Differentiation In Vitro of Very Small Embryonic-Like Putative Stem Cells in Adult Mammalian Ovary. Stem Cells and Development, 2011, 20, 1451-1464.	1.1	239

#	Article	IF	CITATIONS
109	Evaluating differentiation propensity of in-house derived human embryonic stem cell lines KIND-1 and KIND-2. In Vitro Cellular and Developmental Biology - Animal, 2011, 47, 406-419.	0.7	16
110	Newer Insights Into Premeiotic Development of Germ Cells in Adult Human Testis Using Oct-4 as a Stem Cell Marker. Journal of Histochemistry and Cytochemistry, 2010, 58, 1093-1106.	1.3	106
111	Role of TGF beta and myofibroblasts in supporting the propagation of human embryonic stem cells in vitro. International Journal of Developmental Biology, 2010, 54, 1329-1336.	0.3	6
112	Derivation and Characterization of Two Genetically Unique Human Embryonic Stem Cell Lines on In-House–Derived Human Feeders. Stem Cells and Development, 2009, 18, 435-446.	1.1	45
113	Stage-specific Localization and Expression of c-kit in the Adult Human Testis. Journal of Histochemistry and Cytochemistry, 2009, 57, 861-869.	1.3	54
114	Parthenogenesis and somatic cell nuclear transfer in sheep oocytes using Polscope. Indian Journal of Experimental Biology, 2009, 47, 550-8.	0.5	3
115	Y chromosome mosaicism and occurrence of gonadoblastoma in cases of Turner syndrome and amenorrhoea. Reproductive BioMedicine Online, 2007, 15, 547-553.	1.1	21
116	Developmental expression and cellular distribution of Mul̀`llerian inhibiting substance in the primate ovary. Reproduction, 2006, 132, 443-453.	1.1	53
117	Down syndrome: a study of chromosomal mosaicism. Reproductive BioMedicine Online, 2003, 6, 499-503.	1.1	26
118	Preimplantation Genetic Diagnosis for the Better Management of Couples During Assisted Reproduction. International Journal of Human Genetics, 2001, 1, 117-121.	0.1	1
119	Antibody Directed to a 26 kDa Epididymal Sperm Protein Inhibits Sperm Maturation, Function and Fertility Significantly in Mouse. , 1999, , 316-333.		2
120	Estrogen Promotes Angiogenic Activity in Human Umbilical Vein Endothelial Cells In Vitro and in a Murine Model. Circulation, 1995, 91, 755-763.	1.6	382
121	Growth Hormone Receptor Gene Expression in the Mouse Uterus. Journal of the Society for Gynecologic Investigation, 1994, 1, 285-289.	1.9	12
122	Expression of Clara Cell 10-kD Gene in the Human Endometrium and Its Relationship to Ovarian Menstrual Cycle. DNA and Cell Biology, 1994, 13, 495-503.	0.9	31
123	Enhanced wound healing in animal models by interferon and an interferon inducer. Journal of Cellular Physiology, 1992, 150, 312-319.	2.0	37
124	Regulation of Laminin Expression by Interferon. Journal of Interferon Research, 1991, 11, 75-80.	1.2	7
125	Effects of interferon in malaria infection. Immunology Letters, 1990, 25, 53-57.	1.1	7