List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4973570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A promoter-level mammalian expression atlas. Nature, 2014, 507, 462-470.	13.7	1,838
2	The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature Biotechnology, 2010, 28, 827-838.	9.4	795
3	Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated metaâ€omicsâ€based approach. Hepatology, 2017, 65, 451-464.	3.6	572
4	Repeatability of published microarray gene expression analyses. Nature Genetics, 2009, 41, 149-155.	9.4	477
5	Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemometrics and Intelligent Laboratory Systems, 2006, 83, 83-90.	1.8	452
6	The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. Nature Biotechnology, 2014, 32, 926-932.	9.4	420
7	Comparison of RNA-seq and microarray-based models for clinical endpoint prediction. Genome Biology, 2015, 16, 133.	3.8	325
8	A Comparison of MCC and CEN Error Measures in Multi-Class Prediction. PLoS ONE, 2012, 7, e41882.	1.1	286
9	minerva and minepy: a C engine for the MINE suite and its R, Python and MATLAB wrappers. Bioinformatics, 2013, 29, 407-408.	1.8	174
10	Reporting guidelines for human microbiome research: the STORMS checklist. Nature Medicine, 2021, 27, 1885-1892.	15.2	170
11	Predicting habitat suitability with machine learning models: The potential area of Pinus sylvestris L. in the Iberian Peninsula. Ecological Modelling, 2006, 197, 383-393.	1.2	154
12	Mitigation Measures for Pandemic Influenza in Italy: An Individual Based Model Considering Different Scenarios. PLoS ONE, 2008, 3, e1790.	1.1	143
13	Entropy-based gene ranking without selection bias for the predictive classification of microarray data. BMC Bioinformatics, 2003, 4, 54.	1.2	116
14	Tumor-infiltrating T lymphocytes improve clinical outcome of therapy-resistant neuroblastoma. Oncolmmunology, 2015, 4, e1019981.	2.1	105
15	LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease. Oncotarget, 2015, 6, 41434-41452.	0.8	100
16	Deep representation learning of electronic health records to unlock patient stratification at scale. Npj Digital Medicine, 2020, 3, 96.	5.7	90
17	Cellular and gene signatures of tumor-infiltrating dendritic cells and natural-killer cells predict prognosis of neuroblastoma. Nature Communications, 2020, 11, 5992.	5.8	87
18	Algebraic stability indicators for ranked lists in molecular profiling. Bioinformatics, 2008, 24, 258-264.	1.8	85

#	Article	IF	CITATIONS
19	PD-L1 Is a Therapeutic Target of the Bromodomain Inhibitor JQ1 and, Combined with HLA Class I, a Promising Prognostic Biomarker in Neuroblastoma. Clinical Cancer Research, 2017, 23, 4462-4472.	3.2	85
20	Clinical Value of Prognosis Gene Expression Signatures in Colorectal Cancer: A Systematic Review. PLoS ONE, 2012, 7, e48877.	1.1	79
21	Phylogenetic convolutional neural networks in metagenomics. BMC Bioinformatics, 2018, 19, 49.	1.2	75
22	Machine learning methods for predictive proteomics. Briefings in Bioinformatics, 2007, 9, 119-128.	3.2	65
23	Geographical Information Systems and Bootstrap Aggregation (Bagging) of Tree-Based Classifiers for Lyme Disease Risk Prediction in Trentino, Italian Alps. Journal of Medical Entomology, 2002, 39, 485-492.	0.9	61
24	Rapid and non-destructive identification of strawberry cultivars by direct PTR-MS headspace analysis and data mining techniques. Sensors and Actuators B: Chemical, 2007, 121, 379-385.	4.0	61
25	Deep learning for automatic stereotypical motor movement detection using wearable sensors in autism spectrum disorders. Signal Processing, 2018, 144, 180-191.	2.1	60
26	Focal adhesion kinase depletion reduces human hepatocellular carcinoma growth by repressing enhancer of zeste homolog 2. Cell Death and Differentiation, 2017, 24, 889-902.	5.0	53
27	The impact of climate change on grapevine phenology and the influence of altitude: A regional study. Agricultural and Forest Meteorology, 2019, 271, 73-82.	1.9	52
28	Evaluating reproducibility of AI algorithms in digital pathology with DAPPER. PLoS Computational Biology, 2019, 15, e1006269.	1.5	49
29	Gene expression profiling identifies potential relevant genes in alveolar rhabdomyosarcoma pathogenesis and discriminatesPAX3-FKHR positive and negative tumors. International Journal of Cancer, 2006, 118, 2772-2781.	2.3	48
30	Modern data mining tools in descriptive sensory analysis: A case study with a Random forest approach. Food Quality and Preference, 2007, 18, 681-689.	2.3	48
31	Novelty Detection using Deep Normative Modeling for IMU-Based Abnormal Movement Monitoring in Parkinson's Disease and Autism Spectrum Disorders. Sensors, 2018, 18, 3533.	2.1	46
32	Precipitation Nowcasting with Orographic Enhanced Stacked Generalization: Improving Deep Learning Predictions on Extreme Events. Atmosphere, 2020, 11, 267.	1.0	45
33	Identification of GALNT14 as a novel neuroblastoma predisposition gene. Oncotarget, 2015, 6, 26335-26346.	0.8	43
34	Functional analysis of multiple genomic signatures demonstrates that classification algorithms choose phenotype-related genes. Pharmacogenomics Journal, 2010, 10, 310-323.	0.9	41
35	pyphysio: A physiological signal processing library for data science approaches in physiology. SoftwareX, 2019, 10, 100287.	1.2	41
36	Classification Tree Methods for Analysis of Mesoscale Distribution of Ixodes ricinus (Acari: Ixodidae) in Trentino, Italian Alps. Journal of Medical Entomology, 1996, 33, 888-893.	0.9	37

#	Article	IF	CITATIONS
37	Multi-omics integration for neuroblastoma clinical endpoint prediction. Biology Direct, 2018, 13, 5.	1.9	35
38	Parallelizing AdaBoost by weights dynamics. Computational Statistics and Data Analysis, 2007, 51, 2487-2498.	0.7	32
39	Modeling socio-demography to capture tuberculosis transmission dynamics in a low burden setting. Journal of Theoretical Biology, 2011, 289, 197-205.	0.8	32
40	The international MAQC Society launches to enhance reproducibility of high-throughput technologies. Nature Biotechnology, 2017, 35, 1127-1128.	9.4	32
41	A Pan-Cancer Approach to Predict Responsiveness to Immune Checkpoint Inhibitors by Machine Learning. Cancers, 2019, 11, 1562.	1.7	31
42	Integrative Network Fusion: A Multi-Omics Approach in Molecular Profiling. Frontiers in Oncology, 2020, 10, 1065.	1.3	30
43	Predictability of drug-induced liver injury by machine learning. Biology Direct, 2020, 15, 3.	1.9	30
44	A verified genomic reference sample for assessing performance of cancer panels detecting small variants of low allele frequency. Genome Biology, 2021, 22, 111.	3.8	29
45	A deep learning model to recognize food contaminating beetle species based on elytra fragments. Computers and Electronics in Agriculture, 2019, 166, 105002.	3.7	28
46	GBCNet: In-Field Grape Berries Counting for Yield Estimation by Dilated CNNs. Applied Sciences (Switzerland), 2020, 10, 4870.	1.3	28
47	Combining feature selection and DTW for time-varying functional genomics. IEEE Transactions on Signal Processing, 2006, 54, 2436-2443.	3.2	24
48	Effect of Size and Heterogeneity of Samples on Biomarker Discovery: Synthetic and Real Data Assessment. PLoS ONE, 2012, 7, e32200.	1.1	23
49	The HIM glocal metric and kernel for network comparison and classification. , 2015, , .		23
50	Semisupervised Learning for Molecular Profiling. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2005, 2, 110-118.	1.9	21
51	Assessing sources of inconsistencies in genotypes and their effects on genome-wide association studies with HapMap samples. Pharmacogenomics Journal, 2010, 10, 364-374.	0.9	21
52	Algebraic Comparison of Partial Lists in Bioinformatics. PLoS ONE, 2012, 7, e36540.	1.1	21
53	Cross-oncopanel study reveals high sensitivity and accuracy with overall analytical performance depending on genomic regions. Genome Biology, 2021, 22, 109.	3.8	20
54	Stability Indicators in Network Reconstruction. PLoS ONE, 2014, 9, e89815.	1.1	20

CESARE FURLANELLO

#	Article	IF	CITATIONS
55	Variability in GWAS analysis: the impact of genotype calling algorithm inconsistencies. Pharmacogenomics Journal, 2010, 10, 324-335.	0.9	18
56	Batch effects in the BRLMM genotype calling algorithm influence GWAS results for the Affymetrix 500K array. Pharmacogenomics Journal, 2010, 10, 336-346.	0.9	18
57	Tumor-infiltrating T cells and PD-L1 expression in childhood malignant extracranial germ-cell tumors. Oncolmmunology, 2019, 8, e1542245.	2.1	18
58	A machine learning pipeline for quantitative phenotype prediction from genotype data. BMC Bioinformatics, 2010, 11, S3.	1.2	17
59	BIAS-VARIANCE CONTROL VIA HARD POINTS SHAVING. International Journal of Pattern Recognition and Artificial Intelligence, 2004, 18, 891-903.	0.7	16
60	Distillation of the clinical algorithm improves prognosis by multi-task deep learning in high-risk Neuroblastoma. PLoS ONE, 2018, 13, e0208924.	1.1	16
61	Comparison of Wearable and Clinical Devices for Acquisition of Peripheral Nervous System Signals. Sensors, 2020, 20, 6778.	2.1	16
62	Automatic model selection in cost-sensitive boosting. Information Fusion, 2003, 4, 3-10.	11.7	15
63	TAASRAD19, a high-resolution weather radar reflectivity dataset for precipitation nowcasting. Scientific Data, 2020, 7, 234.	2.4	15
64	Assessment of variability in GWAS with CRLMM genotyping algorithm on WTCCC coronary artery disease. Pharmacogenomics Journal, 2010, 10, 347-354.	0.9	14
65	A metaproteomic-based gut microbiota profiling in children affected by autism spectrum disorders. Journal of Proteomics, 2022, 251, 104407.	1.2	14
66	Machine learning models for predicting endocrine disruption potential of environmental chemicals. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2018, 36, 237-251.	2.9	12
67	Al Slipping on Tiles: Data Leakage in Digital Pathology. Lecture Notes in Computer Science, 2021, , 167-182.	1.0	12
68	An interactive effect of batch size and composition contributes to discordant results in GWAS with the CHIAMO genotyping algorithm. Pharmacogenomics Journal, 2010, 10, 355-363.	0.9	11
69	Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network. Nature Communications, 2021, 12, 3297.	5.8	11
70	Tuning Cost-Sensitive Boosting and Its Application to Melanoma Diagnosis. Lecture Notes in Computer Science, 2001, , 32-42.	1.0	11
71	Quantifying the Child–Therapist Interaction in ASD Intervention: An Observational Coding System. Brain Sciences, 2021, 11, 366.	1.1	10
72	Is Smiling the Key? Machine Learning Analytics Detect Subtle Patterns in Micro-Expressions of Infants with ASD. Journal of Clinical Medicine, 2021, 10, 1776.	1.0	10

#	Article	IF	CITATIONS
73	Orchestrating and sharing large multimodal data for transparent and reproducible research. Nature Communications, 2021, 12, 5797.	5.8	10
74	MASS-UMAP: Fast and Accurate Analog Ensemble Search in Weather Radar Archives. Remote Sensing, 2019, 11, 2922.	1.8	9
75	Application of Artificial Intelligence in Targeting Retinal Diseases. Current Drug Targets, 2020, 21, 1208-1215.	1.0	9
76	A Grid Environment for High-Throughput Proteomics. IEEE Transactions on Nanobioscience, 2007, 6, 117-123.	2.2	8
77	Integrating gene expression profiling and clinical data. International Journal of Approximate Reasoning, 2008, 47, 58-69.	1.9	8
78	Selection of Tree-Biased Classifiers with the Bootstrap 632+ Rule. Biometrical Journal, 1997, 39, 369-382.	0.6	7
79	DTW-MIC Coexpression Networks from Time-Course Data. PLoS ONE, 2016, 11, e0152648.	1.1	7
80	Diet and the Gut Microbiota â \in " How the Gut. , 2015, , 225-245.		6
81	Physiological and self-report responses of parents of children with autism spectrum disorder to children crying. Research in Developmental Disabilities, 2018, 73, 31-39.	1.2	6
82	Efficient Feature Selection for PTR-MS Fingerprinting of Agroindustrial Products. Lecture Notes in Computer Science, 2008, , 42-51.	1.0	5
83	Highlighting Hard Patterns via AdaBoost Weights Evolution. Lecture Notes in Computer Science, 2002, , 72-80.	1.0	4
84	Speaker Normalization and Model Selection of Combined Neural Networks. Connection Science, 1997, 9, 31-50.	1.8	3
85	A Machine Learning Pipeline for Discriminant Pathways Identification. Lecture Notes in Computer Science, 2012, , 36-48.	1.0	3
86	Physiolyze: A Galaxy-based web service for Heart Rate Variability analysis with online processing. , 2014, , .		2
87	Differential Network Analysis and Graph Classification: A Glocal Approach. , 2016, , 17-30.		2
88	Strategies for containing an influenza pandemic: the case of Italy. , 2006, , .		1
89	TOFwave: reproducibility in biomarker discovery from time-of-flight mass spectrometry data. Molecular BioSystems, 2012, 8, 2845.	2.9	1
90	Stability in GRN Inference. Methods in Molecular Biology, 2019, 1883, 323-346.	0.4	1

#	ARTICLE	IF	CITATIONS
91	A Machine Learning Pipeline for Identification of Discriminant Pathways. , 2014, , 951-968.		1
92	Incremental learning of roughly represented concepts. Lecture Notes in Computer Science, 1993, , 192-198.	1.0	1
93	Semisupervised Profiling of Gene Expressions and Clinical Data. Lecture Notes in Computer Science, 2006, , 284-289.	1.0	0
94	Spectral Mapping: a Comparison of Connectionist Approaches. Perspectives in Neural Computing, 1997, , 270-277.	0.1	0