Hidetoshi Sakurai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4973380/publications.pdf Version: 2024-02-01

HIDETOSHI SAKUDAL

#	Article	IF	CITATIONS
1	Transplantation of human iPSC-derived muscle stem cells in the diaphragm of Duchenne muscular dystrophy model mice. PLoS ONE, 2022, 17, e0266391.	2.5	10
2	Single-cell RNA-seq reveals heterogeneity in hiPSC-derived muscle progenitors and E2F family as a key regulator of proliferation. Life Science Alliance, 2022, 5, e202101312.	2.8	1
3	Characterization of hiPSC-Derived Muscle Progenitors Reveals Distinctive Markers for Myogenic Cell Purification Toward Cell Therapy. Stem Cell Reports, 2021, 16, 883-898.	4.8	26
4	A muscle fatigue-like contractile decline was recapitulated using skeletal myotubes from Duchenne muscular dystrophy patient-derived iPSCs. Cell Reports Medicine, 2021, 2, 100298.	6.5	17
5	Restoration of the defect in radial glial fiber migration and cortical plate organization in a brain organoid model of Fukuyama muscular dystrophy. IScience, 2021, 24, 103140.	4.1	5
6	Orai1–STIM1 Regulates Increased Ca2+ Mobilization, Leading to Contractile Duchenne Muscular Dystrophy Phenotypes in Patient-Derived Induced Pluripotent Stem Cells. Biomedicines, 2021, 9, 1589.	3.2	4
7	Induced Fetal Human Muscle Stem Cells with High Therapeutic Potential in a Mouse Muscular Dystrophy Model. Stem Cell Reports, 2020, 15, 80-94.	4.8	31
8	Core Transcription Factors Promote Induction of PAX3-Positive Skeletal Muscle Stem Cells. Stem Cell Reports, 2019, 13, 352-365.	4.8	29
9	Recapitulation of Extracellular LAMININ Environment Maintains Stemness of Satellite Cells InÂVitro. Stem Cell Reports, 2018, 10, 568-582.	4.8	30
10	A human iPS cell myogenic differentiation system permitting high-throughput drug screening. Stem Cell Research, 2017, 25, 98-106.	0.7	52
11	Early pathogenesis of Duchenne muscular dystrophy modelled in patient-derived human induced pluripotent stem cells. Scientific Reports, 2015, 5, 12831.	3.3	99
12	Precise Correction of the Dystrophin Gene in Duchenne Muscular Dystrophy Patient Induced Pluripotent Stem Cells by TALEN and CRISPR-Cas9. Stem Cell Reports, 2015, 4, 143-154.	4.8	459
13	Efficient and Reproducible Myogenic Differentiation from Human iPS Cells: Prospects for Modeling Miyoshi Myopathy In Vitro. PLoS ONE, 2013, 8, e61540.	2.5	188