Huanwei Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4973366/publications.pdf

Version: 2024-02-01

759233 642732 31 573 12 23 citations h-index g-index papers 31 31 31 529 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Multi-Locus Genome-Wide Association Study Reveals the Genetic Architecture of Stalk Lodging Resistance-Related Traits in Maize. Frontiers in Plant Science, 2018, 9, 611.	3.6	103
2	Genetic Dissection of Maize Embryonic Callus Regenerative Capacity Using Multi-Locus Genome-Wide Association Studies. Frontiers in Plant Science, 2018, 9, 561.	3.6	99
3	Genomeâ€wide analysis of transcription factors involved in maize embryonic callus formation. Physiologia Plantarum, 2016, 158, 452-462.	5.2	50
4	Transcription Factors Responding to Pb Stress in Maize. Genes, 2017, 8, 231.	2.4	35
5	Metabolomic and Proteomic Analysis of Maize Embryonic Callus induced from immature embryo. Scientific Reports, 2017, 7, 1004.	3.3	33
6	Dietary administration of resistant starch improved caecal barrier function by enhancing intestinal morphology and modulating microbiota composition in meat duck. British Journal of Nutrition, 2020, 123, 172-181.	2.3	24
7	Effect of High Dietary Manganese on the Immune Responses of Broilers Following Oral Salmonella typhimurium Inoculation. Biological Trace Element Research, 2018, 181, 347-360.	3.5	20
8	Transcriptome sequencing analysis of maize embryonic callus during early redifferentiation. BMC Genomics, 2019, 20, 159.	2.8	19
9	Impact of Dietary Manganese on Intestinal Barrier and Inflammatory Response in Broilers Challenged with Salmonella Typhimurium. Microorganisms, 2020, 8, 757.	3.6	19
10	Integrative analysis of DNA methylation, mRNAs, and small RNAs during maize embryo dedifferentiation. BMC Plant Biology, 2017, 17, 105.	3.6	16
11	Dietary supplement of essential oil from oregano affects growth performance, nutrient utilization, intestinal morphology and antioxidant ability in Pekin ducks. Journal of Animal Physiology and Animal Nutrition, 2020, 104, 1067-1074.	2.2	16
12	Identification of quantitative trait loci for leafâ€related traits in an IBM Syn10 DH maize population across three environments. Plant Breeding, 2018, 137, 127-138.	1.9	15
13	Combination of multi-locus genome-wide association study and QTL mapping reveals genetic basis of tassel architecture in maize. Molecular Genetics and Genomics, 2019, 294, 1421-1440.	2.1	12
14	The Effects of Broiler Breeder Dietary Vitamin E and Egg Storage Time on the Quality of Eggs and Newly Hatched Chicks. Animals, 2020, 10, 1409.	2.3	12
15	Dietary methionine source and level affect hepatic sulfur amino acid metabolism of broiler breeder hens. Animal Science Journal, 2017, 88, 2016-2024.	1.4	10
16	Tandem mass tag-based quantitative proteomics analysis and gelling properties in egg albumen of laying hens feeding tea polyphenols. Poultry Science, 2020, 99, 430-440.	3.4	10
17	Effects of maternal dietary vitamin E on the egg characteristics, hatchability and offspring quality of prolonged storage eggs of broiler breeder hens. Journal of Animal Physiology and Animal Nutrition, 2020, 104, 1384-1391.	2.2	10
18	Endogenous small interfering RNAs associated with maize embryonic callus formation. PLoS ONE, 2017, 12, e0180567.	2.5	9

#	Article	IF	CITATIONS
19	Effects of dietary nanocrystalline cellulose supplementation on growth performance, carcass traits, intestinal development and lipid metabolism of meat ducks. Animal Nutrition, 2016, 2, 192-197.	5.1	7
20	Effect of 25-Hydroxycholecalciferol with Different Vitamin D3 Levels in the Hens Diet in the Rearing Period on Growth Performance, Bone Quality, Egg Production, and Eggshell Quality. Agriculture (Switzerland), 2021, 11, 698.	3.1	7
21	Dietary phosphorus deficiency impaired growth, intestinal digestion and absorption function of meat ducks. Asian-Australasian Journal of Animal Sciences, 2019, 32, 1897-1906.	2.4	7
22	Uptake of Manganese from the Manganese-Lysine Complex in Primary Chicken Intestinal Epithelial Cells. Animals, 2019, 9, 559.	2.3	6
23	Effects of high dietary iron on the lipid metabolism in the liver and adipose tissue of male broiler chickens. Animal Feed Science and Technology, 2021, 282, 115131.	2.2	6
24	Effects of Dietary Iron on Manganese Utilization in Broilers Fed with Corn-Soybean Meal Diet. Biological Trace Element Research, 2020, 194, 514-524.	3.5	5
25	The Systemic Zinc Homeostasis Was Modulated in Broilers Challenged by Salmonella. Biological Trace Element Research, 2020, 196, 243-251.	3.5	5
26	High Dietary Iron Differentially Influences the Iron Distribution in the Livers and the Spleens of Laying Hens After Salmonella Typhimurium Infection. Biological Trace Element Research, 2018, 185, 497-508.	3.5	4
27	Effects of Dietary Iron Concentration on Manganese Utilization in Broilers Fed with Manganese-Lysine Chelate-Supplemented Diet. Biological Trace Element Research, 2020, 198, 231-242.	3.5	4
28	Effects of Dietary Glucose Oxidase Supplementation on the Performance, Apparent Ileal Amino Acids Digestibility, and Ileal Microbiota of Broiler Chickens. Animals, 2021, 11, 2909.	2.3	4
29	Dietary apple pectic oligosaccharide improves reproductive performance, antioxidant capacity, and ovary function of broiler breeders. Poultry Science, 2021, 100, 100976.	3.4	3
30	Effects of Maternal and Progeny Dietary Vitamin E on Growth Performance and Antioxidant Status of Progeny Chicks before and after Egg Storage. Animals, 2021, 11, 998.	2.3	2
31	Relative bioavailability of humate–manganese complex for broilers fed a corn–soya bean meal diet. Journal of Animal Physiology and Animal Nutrition, 2019, 103, 108-115.	2.2	1