Sandrine Juillaguet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4972548/publications.pdf

Version: 2024-02-01

471509 552781 1,111 127 17 26 citations h-index g-index papers 128 128 128 818 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Electrical transport properties of highly doped N-type GaN materials. Semiconductor Science and Technology, 2022, 37, 055012.	2.0	6
2	p-type conductivity in GaN:Zn monocrystals grown by ammonothermal method. Journal of Applied Physics, 2021, 129, .	2.5	5
3	High temperature electrical transport properties of MBE-grown Mg-doped GaN and AlGaN materials. Journal of Applied Physics, 2020, 128, .	2.5	5
4	Electrical transport properties of p-type 4H-SiC. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600679.	1.8	20
5	High Temperature Annealing of MBE-grown Mg-doped GaN. Journal of Physics: Conference Series, 2017, 864, 012018.	0.4	2
6	Influence of Growth Temperature on Site Competition Effects during Chemical Vapor Deposition of 4H-SiC Layers. Materials Science Forum, 2017, 897, 79-82.	0.3	0
7	Optical investigations and strain effect in AlGaN/GaN epitaxial layers. Journal of Physics: Conference Series, 2017, 864, 012021.	0.4	O
8	Comparative Study of p-Type 4H-SiC Grown on n-Type and Semi Insulating 4H-SiC Substrates. Materials Science Forum, 2017, 897, 275-278.	0.3	1
9	Effect of germanium doping on electrical properties of n-type 4H-SiC homoepitaxial layers grown by chemical vapor deposition. Journal of Applied Physics, 2016, 120, .	2.5	6
10	Influence of AlN thickness on AlGaN epilayer grown by MOCVD. Superlattices and Microstructures, 2016, 98, 515-521.	3.1	5
11	Optical Characterization of p-Type 4H-SiC Epilayers. Materials Science Forum, 2015, 821-823, 249-252.	0.3	1
12	Structural properties and dielectric function of graphene grown by high-temperature sublimation on 4H-SiC(000-1). Journal of Applied Physics, 2015, 117, .	2.5	16
13	Influence of Site Competition Effects on Dopant Incorporation during Chemical Vapor Deposition of 4H-SiC Epitaxial Layers. Materials Science Forum, 2015, 821-823, 149-152.	0.3	1
14	Comparative Study of n-Type 4H-SiC: Raman vs Photoluminescence Spectroscopy. Materials Science Forum, 2015, 821-823, 237-240.	0.3	0
15	Characterization of Ge-Doped Homoepitaxial Layers Grown by Chemical Vapor Deposition. Materials Science Forum, 2014, 778-780, 261-264.	0.3	7
16	Raman Investigation of Heavily Al Doped 4H-SiC Layers Grown by CVD. Materials Science Forum, 2014, 806, 51-55.	0.3	4
17	Ge incorporation inside 4H-SiC during homoepitaxial growth by chemical vapor deposition. Acta Materialia, 2014, 75, 219-226.	7.9	16
18	Raman Investigation of Aluminum-Doped 4H-SiC. Materials Science Forum, 2013, 740-742, 357-360.	0.3	6

#	Article	IF	CITATIONS
19	Stacking faults in intrinsic and N-doped 4H–SiC: true influence of the N-doping on their multiplicity. Philosophical Magazine, 2013, 93, 1317-1325.	1.6	7
20	Impact of extended defects on Hall and magnetoresistivity effects in cubic silicon carbide. Journal Physics D: Applied Physics, 2012, 45, 225102.	2.8	5
21	Fluorescent silicon carbide as an ultraviolet-to-visible light converter by control of donor to acceptor recombinations. Journal Physics D: Applied Physics, 2012, 45, 235107.	2.8	9
22	Shockley-Frank stacking faults in 6H-SiC. Journal of Applied Physics, 2012, 111, 113527.	2.5	6
23	Seeding Layer Influence on the Low Temperature Photoluminescence Intensity of 3C-SiC Grown on 6H-SiC by Sublimation Epitaxy. Materials Science Forum, 2012, 711, 149-153.	0.3	2
24	Room temperature luminescence properties of fluorescent SiC as white light emitting diode medium. Thin Solid Films, 2012, 522, 33-35.	1.8	10
25	Cubic SiC formation on the C-face of 6H–SiC (0001) substrates. Journal of Crystal Growth, 2012, 348, 91-96.	1.5	19
26	Comparative micro-photoluminescence investigation of ZnO hexagonal nanopillars and the seeding layer grown on 4H-SiC. Journal of Luminescence, 2012, 132, 122-127.	3.1	2
27	Optical Investigation of Defect Filtering Effects in Bulk 3C-SiC Crystals Grown by the CF-PVT Method Using a Necking Technique. Materials Science Forum, 2011, 679-680, 169-172.	0.3	0
28	Splitting of type-I (N-B, P-Al) and type-II (N-Al, N-Ga) donor-acceptor pair spectra in 3C-SiC. Physical Review B, 2011, 83, .	3.2	6
29	Effect of initial substrate conditions on growth of cubic silicon carbide. Journal of Crystal Growth, 2011, 324, 7-14.	1.5	29
30	Influence of Post-Growth Annealing on the Defects Nature and Distribution in VLS Grown (111) 3C-SiC Layers. Materials Science Forum, 2011, 679-680, 241-244.	0.3	2
31	Optical Characterization of VLS+CVD Grown 3C-SiC Films by Non-Linear and Photoluminescence Techniques. Materials Science Forum, 2010, 645-648, 443-446.	0.3	6
32	Effects of Growth Conditions on the Low Temperature Photoluminescence Spectra of (111) 3C-SiC Layers Grown by Chemical Vapor Deposition on 3C-SiC Seeds grown by the Vapor-Liquid-Solid Technique., 2010,,.		0
33	Influence of the Câ^•Si Ratio on the Dopant Concentration and Defects in CVD Grown 3C-SiC Homoepitaxial Layers. AIP Conference Proceedings, 2010, , .	0.4	4
34	Splitting of close N-Al donor-acceptor-pair spectra in 3C-SiC. , 2010, , .		0
35	Combined effects of Ga, N, and Al codoping in solution grown 3C–SiC. Journal of Applied Physics, 2010, 108, 013503.	2.5	11
36	Photoluminescence-Topography of the p-Type Doped SiC Wafers for Determination of Doping Inhomogeneity. Materials Science Forum, 2009, 615-617, 259-262.	0.3	1

#	Article	lF	Citations
37	Optical investigation of stacking faults in 4H–SiC epitaxial layers: Comparison of 3C and 8H polytypes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 165, 5-8.	3.5	4
38	Combined structural and optical studies of stacking faults in 4Hâ€SiC layers grown by chemical vapour deposition. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1924-1930.	1.8	8
39	Defect-induced polytype transformations in LPE grown SiC epilayers on (111) 3C-SiC seeds grown by VLS on 6H-SiC. Physica B: Condensed Matter, 2009, 404, 4727-4730.	2.7	4
40	Optical properties of asâ€grown and processâ€induced stacking faults in 4Hâ€SiC. Physica Status Solidi (B): Basic Research, 2008, 245, 1337-1355.	1.5	15
41	Prospects for 3C-SiC bulk crystal growth. Journal of Crystal Growth, 2008, 310, 976-981.	1.5	38
42	Nitrogen doping of 3C-SiC thin films grown by CVD in a resistively heated horizontal hot-wall reactor. Journal of Crystal Growth, 2008, 310, 3174-3182.	1.5	41
43	Quantum confinement effect of ZnO nanocrystallites embedded in In2O3 films. Journal of Applied Physics, 2008, 104, 084906.	2.5	2
44	Optical investigation methods for SiC device development: application to stacking faults diagnostic in active epitaxial layers. Journal Physics D: Applied Physics, 2007, 40, 6264-6277.	2.8	23
45	Nonlinear dependence of the magnetophotoluminescence energies of asymmetricGaAsâ°•Ga0.67Al0.33Asquantum wells on an external magnetic field. Physical Review B, 2007, 75, .	3.2	6
46	Screening the built-in electric field in 4H silicon carbide stacking faults. Applied Physics Letters, 2007, 90, 111902.	3.3	9
47	Electric-Field Screening Effects in the Micro-Photoluminescence Spectra of As-Grown Stacking Faults in 4H-SiC. Materials Science Forum, 2007, 556-557, 351-354.	0.3	0
48	Growth and Characterization of $\sup 13$ (sup > C Enriched 4H-SiC for Fundamental Materials Studies. Materials Science Forum, 2007, 556-557, 13-16.	0.3	4
49	Photoluminescence, cathodo-luminescence and micro-Raman spectroscopy of as-grown stacking faults in 4H-SiC. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1513-1516.	0.8	0
50	Doping effect on the optical properties of ZnO nanostructures. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1432-1437.	0.8	5
51	Strain and wafer curvature of 3C-SiC films on silicon: influence of the growth conditions. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 981-986.	1.8	54
52	Cathodoluminescence investigation of stacking faults extension in 4H-SiC. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2222-2228.	1.8	5
53	Characterization of a 3C-SiC Single Domain Grown on 6H-SiC(0001) by a Vaporâ^'Liquidâ^'Solid Mechanism. Crystal Growth and Design, 2006, 6, 2598-2602.	3.0	30
54	Application of LTPL Investigation Methods to CVD-Grown SiC. Chemical Vapor Deposition, 2006, 12, 549-556.	1.3	38

#	Article	IF	CITATIONS
55	Results of SIMS, LTPL and Temperature-Dependent Hall Effect Measurements Performed on Al-Doped α-SiC Substrates Grown by the M-PVT Method. Materials Science Forum, 2006, 527-529, 633-636.	0.3	7
56	Characterization of Bulk <111> 3C-SiC Single Crystals Grown on 4H-SiC by the CF-PVT Method. Materials Science Forum, 2006, 527-529, 99-102.	0.3	12
57	Single-Domain 3C-SiC Epitaxially Grown on 6H-SiC by the VLS Mechanism. Materials Science Forum, 2006, 527-529, 287-290.	0.3	6
58	Fabrication and characterization of high quality undoped and Ga2O3-doped ZnO thin films by reactive electron beam co-evaporation technique. Journal of Crystal Growth, 2005, 275, 512-520.	1.5	54
59	Optical properties of Ga2O3 doped ZnO nanoribbons. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1314-1318.	0.8	16
60	Control of 3C-SiC/Si wafer bending by the "checker-board―carbonization method. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 524-530.	1.8	18
61	Control of epitaxial layers grown on 4H-SiC: from 3C microcrystalline inclusions to type II quantum well structures. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 593-597.	1.8	3
62	Technical aspects of 〈\$ f 11ar 20 \$〉 4H-SiC MOSFET processing. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 680-685.	1.8	1
63	Intensity Ratio of the Doublet Signature of Excitons Bound to 3C-SiC Stacking Faults in a 4H-SiC Matrix. Materials Science Forum, 2005, 483-485, 331-334.	0.3	12
64	Excitation Power Dependence of Al-Related Features in the LTPL Spectra of 4H-SiC. Materials Science Forum, 2005, 483-485, 449-452.	0.3	2
65	Comparative Evaluation of Free-Standing 3C-SiC Crystals. Materials Science Forum, 2005, 483-485, 229-232.	0.3	6
66	Evaluation of p-Type Doping for $(1,1,-2,0)$ Epitaxial Layers Grown on \hat{l}_{\pm} -Cut $(1,1,-2,0)$ 4H-SiC Substrates. Materials Science Forum, 2005, 483-485, 117-120.	0.3	1
67	Specific Aspects of Type II Heteropolytype Stacking Faults in SiC. Materials Science Forum, 2005, 483-485, 335-340.	0.3	17
68	Dilute Aluminium Concentration in 4H-SiC: from SIMS to LTPL Measurements. Materials Science Forum, 2004, 457-460, 775-778.	0.3	16
69	Characterization of Thick 2-Inch 4H-SiC Layers Grown by the Continuous Feed-Physical Vapor Transport Method. Materials Science Forum, 2004, 457-460, 91-94.	0.3	6
70	Investigation of $<1,1,-2,0>$ Epitaxial Layers Grown on a-Cut 4H-SiC Substrates. Materials Science Forum, 2004, 457-460, 237-240.	0.3	5
71	Comparative Studies of <0001> 4H-SiC Layers Grown with Either Silane or HexaMethylDisilane / Propane Precursor Systems. Materials Science Forum, 2004, 457-460, 217-220.	0.3	9
72	Optical Investigation of Stacking Faults and Micro-Crystalline Inclusions In-Low-Doped 4H-SiC Layers. Materials Science Forum, 2004, 457-460, 577-580.	0.3	9

#	Article	IF	CITATIONS
73	Investigation of 2 Inch SiC Layers Grown in a Resistively-Heated LP-CVD Reactor with Horizontal "Hot-Walls". Materials Science Forum, 2004, 457-460, 273-276.	0.3	30
74	Effect of SiN treatment on GaN epilayer quality. Physica Status Solidi A, 2004, 201, 502-508.	1.7	27
75	Optical properties of GaN grown on porous silicon substrate. Physica Status Solidi A, 2004, 201, 582-587.	1.7	12
76	Nontrivial carrier recombination dynamics and optical properties of over-excited GaN/AlN quantum dots. Physica Status Solidi (B): Basic Research, 2004, 241, 2779-2782.	1.5	1
77	Influence of silane flow on MOVPE grown GaN on sapphire substrate by an in situ SiN treatment. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 110, 251-255.	3.5	29
78	Optical properties of GaN/AlN quantum boxes under high photo-excitation. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2666-2669.	0.8	1
79	Growth at High Rates and Characterization of Bulk 3C-SiC Material. Materials Science Forum, 2003, 433-436, 115-118.	0.3	9
80	Discrete states of conduction electrons bound to magnetoacceptors in quantum wells. Physical Review B, 2003, 68, .	3.2	5
81	Hexamethyldisilane/propane versus silane/propane precursors: application to the growth of high-quality 3C–SiC on Si. Semiconductor Science and Technology, 2003, 18, 1015-1023.	2.0	28
82	4H-SiC Material for Hall Effect and High-Temperature Sensors Working in Harsh Environments. Materials Science Forum, 2002, 389-393, 1435-1438.	0.3	6
83	Investigation of porous silicon as a new compliant substrate for 3C-SiC deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 61-62, 571-575.	3.5	13
84	Optical investigation of residual doping species in 6H and 4H-SIC layers grown by chemical vapor deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 61-62, 253-257.	3.5	10
85	Optical assessment of purity improvement effects in bulk 6H and 4H-SiC wafers grown by physical vapor transport. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 61-62, 258-264.	3.5	8
86	Optical Properties of As-Grown, α-Particle Irradiated and N+2-Ion Implanted GaN. Physica Status Solidi (B): Basic Research, 1999, 216, 619-623.	1.5	5
87	Oscillations of 2D electron density in GaAs/Ga0.67Al0.33As heterostructures in the QHE regime. Semiconductor Science and Technology, 1999, 14, 915-920.	2.0	11
88	Experimental Investigation of 4H-SiC Bulk Crystal Growth. Materials Science Forum, 1998, 264-268, 17-20.	0.3	6
89	Raman, Low Temperature Photoluminescence and Transport Investigation of N-Implanted 6H-SiC. Materials Science Forum, 1998, 264-268, 725-728.	0.3	0
90	Optical Properties of InGaN/GaN Multiple Quantum Wells. Materials Science Forum, 1998, 264-268, 1295-1298.	0.3	2

#	Article	IF	Citations
91	Time-resolved photoluminescence studies of InGaN/GaN multiple quantum wells. MRS Internet Journal of Nitride Semiconductor Research, 1997, 2, 1.	1.0	10
92	Photoluminescence investigation of a degenerate two-dimensional electron gas in GaN/AlGaN heterojunction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 43, 211-214.	3.5	4
93	Phonon strain-shift coefficients of Silâ^'x Gexgrown on Ge (001). Physical Review B, 1996, 53, 6923-6926.	3.2	35
94	Strong element dependence of C 1s and Si 2p X-ray photoelectron diffraction profiles for identical C and Si local geometries in \hat{l}^2 -SiC. Surface Science, 1995, 339, 363-371.	1.9	20
95	Optical tools for intermixing diagnostic: application to InGaAs/InGaAsP microstructures. Applied Surface Science, 1993, 63, 177-181.	6.1	5
96	Interface characterization of strained InGaAs/InP quantum wells after a growth interruption sequence. Applied Surface Science, 1993, 63, 187-190.	6.1	7
97	Growth and characterization of In0.53Ga0.47As/InxGa1â^xAs strained-layer superlattices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1993, 21, 244-248.	3.5	3
98	Evidence for non-uniform interface thickness in strained InGaAs/InP quantum wells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1993, 20, 62-65.	3.5	2
99	Non-destructive approaches to interdiffusion phenomena across GalnAs/GalnAsP interfaces: photoluminescence vs. Raman. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1993, 20, 73-76.	3.5	0
100	Morphology of InGaAs/InP QWs: from excitonic spectroscopy to HR-TEM analyses. European Physical Journal Special Topics, 1993, 03, 99-106.	0.2	2
101	Growth and characterization of In0.53Ga0.47As/InxGa1–xAs strained-layer superlattices. European Materials Research Society Symposia Proceedings, 1993, 40, 244-248.	0.0	0
102	Interface characterization of strained InGaAs/InP quantum wells after a growth interruption sequence., 1993,, 187-190.		0
103	Interface properties of strained InGaAs/InP quantum wells grown by LP-MOVPE. Microelectronic Engineering, 1992, 19, 891-894.	2.4	5
104	QUANTITATIVE APPROACH OF NON-STOICHIOMETRIC INTERFACES FOLLOWING A GROWTH INTERRUPTION SEQUENCE: APPLICATION TO LATTICE-MATCHED InGaAs/InP QUANTUM WELLS. , 1992 , , $155-160$.		5
105	Optical characterization of strained InGaAs/InP quantum well structures. , 1992, , 161-166.		2
106	Optical characterization of strained InGaAs/InP quantum well structures. Microelectronic Engineering, 1991, 15, 593-596.	2.4	4
107	Finite interface effects for thin GalnAs/InP quantum wells grown by LP-MOVPE with a growth interruption sequence. Journal of Crystal Growth, 1991, 107, 543-548.	1.5	42
108	Investigation of residual impurity content in GaAs layers grown by VPE under very low pressure conditions. Journal of Electronic Materials, 1991, 20, 79-90.	2.2	1

#	Article	IF	CITATIONS
109	Experimental characterization of interface roughness in strained InGaAs/InP MQWs after a growth interruption sequence. , 0 , , .		O
110	8H Stacking Faults in a 4H-SiC Matrix: Simple Unit Cell or Double 3C Quantum Well?. Materials Science Forum, 0, 615-617, 339-342.	0.3	2
111	Nitrogen Doping of 3C-SiC Single Crystals Grown by CF-PVT. Materials Science Forum, 0, 615-617, 45-48.	0.3	2
112	Advances in Liquid Phase Conversion of (100) and (111) Oriented Si Wafers into Self-Standing 3C-SiC. Materials Science Forum, 0, 615-617, 49-52.	0.3	2
113	Investigation of Low Doped n-Type and p-Type 3C-SiC Layers Grown on 6H-SiC Substrates by Sublimation Epitaxy. Materials Science Forum, 0, 645-648, 179-182.	0.3	1
114	6H-Type Zigzag Faults in Low-Doped 4H-SiC Epitaxial Layers. Materials Science Forum, 0, 645-648, 347-350.	0.3	5
115	TEM and LTPL Investigations of 3C-SiC Layers Grown by LPE on (100) and (111) 3C-SiC Seeds. Materials Science Forum, 0, 645-648, 383-386.	0.3	2
116	Low Doped 3C-SiC Layers Deposited by the Vapour-Liquid-Solid Mechanism on 6H-SiC Substrates. Materials Science Forum, 0, 645-648, 171-174.	0.3	8
117	LTPL Investigation of N-Ga and N-Al Donor-Acceptor Pair Spectra in 3C-SiC Layers Grown by VLS on 6H-SiC Substrates. Materials Science Forum, 0, 645-648, 415-418.	0.3	3
118	Effect of Inter-Well Coupling between 3C and 6H in-Grown Stacking Faults in 4H-SiC Epitaxial Layers. Materials Science Forum, 0, 679-680, 314-317.	0.3	1
119	Structural and Optical Investigation of VLS Grown (111) 3C-SiC Layers on 6H-SiC Substrates in Sn-Based Melts. Materials Science Forum, 0, 679-680, 165-168.	0.3	1
120	Low Temperature Photoluminescence Investigation of 3-Inch SiC Wafers for Power Device Applications. Materials Science Forum, 0, 711, 164-168.	0.3	1
121	Low Temperature Photoluminescence Signature of Stacking Faults in 6H-SiC Epilayers Grown on Low Angle Off-Axis Substrates. Materials Science Forum, 0, 717-720, 407-410.	0.3	0
122	Investigation of Aluminum Incorporation in 4H-SiC Epitaxial Layers. Materials Science Forum, 0, 806, 45-50.	0.3	3
123	Optical Investigation of 3C-SiC Hetero-Epitaxial Layers Grown by Sublimation Epitaxy under Gas Atmosphere. Materials Science Forum, 0, 778-780, 243-246.	0.3	0
124	Study of Geometrical Effects in Charge Pumping Current for Lateral SiC nMOSFETs Electrical Characterization. Materials Science Forum, 0, 821-823, 717-720.	0.3	0
125	Nitrogen Incorporation during Seeded Sublimation Growth of 4H-SiC and 6H-SiC. Materials Science Forum, 0, 821-823, 60-63.	0.3	4
126	p-Type Doping of 4H- and 3C-SiC Epitaxial Layers with Aluminum. Materials Science Forum, 0, 858, 137-142.	0.3	15

#	Article	lF	CITATIONS
127	Electrical Transport Properties of Highly Aluminum Doped p-Type 4H-SiC. Materials Science Forum, 0, 858, 249-252.	0.3	5