Maria T Brandl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4971886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Plant Systemic Resistance Elicited by Biological and Chemical Inducers on the Colonization of the Lettuce and Basil Leaf Apoplast by <i>Salmonella enterica</i> . Applied and Environmental Microbiology, 2021, 87, e0115121.	3.1	8
2	Plant Bioactive Compounds as an Intrinsic and Sustainable Tool to Enhance the Microbial Safety of Crops. Microorganisms, 2021, 9, 2485.	3.6	12
3	Seasonality, shelf life and storage atmosphere are main drivers of the microbiome and E. coli O157:H7 colonization of post-harvest lettuce cultivated in a major production area in California. Environmental Microbiomes, 2021, 16, 25.	5.0	11
4	Formation of Escherichia coli O157:H7 Persister Cells in the Lettuce Phyllosphere and Application of Differential Equation Models To Predict Their Prevalence on Lettuce Plants in the Field. Applied and Environmental Microbiology, 2020, 86, .	3.1	12
5	Breeding Crops for Enhanced Food Safety. Frontiers in Plant Science, 2020, 11, 428.	3.6	26
6	Physical, Microbial, and Chemical Quality of Hot-Air-Dried Persimmon (<i>Diospyros kaki</i>) Chips during Storage. Journal of Food Quality, 2020, 2020, 1-15.	2.6	9
7	Enhanced formation of shiga toxin-producing Escherichia coli persister variants in environments relevant to leafy greens production. Food Microbiology, 2019, 84, 103241.	4.2	12
8	Complete Genome Sequences of Three Shiga Toxin-Producing Escherichia coli O111:H8 Strains Exhibiting an Aggregation Phenotype. Microbiology Resource Announcements, 2019, 8, .	0.6	0
9	Interactions of Salmonella enterica Serovar Typhimurium and Pectobacterium carotovorum within a Tomato Soft Rot. Applied and Environmental Microbiology, 2018, 84, .	3.1	17
10	Conditional Function of Autoaggregative Protein Cah and Common <i>cah</i> Mutations in Shiga Toxin-Producing Escherichia coli. Applied and Environmental Microbiology, 2018, 84, .	3.1	15
11	Assessing the Ability of <i>Salmonella enterica</i> to Translocate Type III Effectors Into Plant Cells. Molecular Plant-Microbe Interactions, 2018, 31, 233-239.	2.6	23
12	Drying and decontamination of raw pistachios with sequential infrared drying, tempering and hot air drying. International Journal of Food Microbiology, 2017, 246, 85-91.	4.7	37
13	Escherichia coli O157:H7 Converts Plant-Derived Choline to Glycine Betaine for Osmoprotection during Pre- and Post-harvest Colonization of Injured Lettuce Leaves. Frontiers in Microbiology, 2017, 8, 2436.	3.5	10
14	Production of the Plant Hormone Auxin by Salmonella and Its Role in the Interactions with Plants and Animals. Frontiers in Microbiology, 2017, 8, 2668.	3.5	40
15	Curli fimbriae are conditionally required in Escherichia coli O157:H7 for initial attachment and biofilm formation. Food Microbiology, 2016, 57, 81-89.	4.2	70
16	High Genotypic and Phenotypic Similarity Among Shiga Toxin–Producing <i>Escherichia coli</i> O111 Environmental and Outbreak Strains. Foodborne Pathogens and Disease, 2015, 12, 235-243.	1.8	12
17	Downy mildew disease promotes the colonization of romaine lettuce by Escherichia coli O157:H7 and Salmonella enterica. BMC Microbiology, 2015, 15, 19.	3.3	33
18	Effect of sulfur dioxide fumigation on survival of foodborne pathogens on table grapes under standard storage temperature. Food Microbiology, 2015, 49, 189-196.	4.2	33

#	Article	IF	CITATIONS
19	Comparative Analysis of Super-Shedder Strains of Escherichia coli O157:H7 Reveals Distinctive Genomic Features and a Strongly Aggregative Adherent Phenotype on Bovine Rectoanal Junction Squamous Epithelial Cells. PLoS ONE, 2015, 10, e0116743.	2.5	36
20	Effect of the Surfactant Tween 80 on the Detachment and Dispersal of Salmonella enterica Serovar Thompson Single Cells and Aggregates from Cilantro Leaves as Revealed by Image Analysis. Applied and Environmental Microbiology, 2014, 80, 5037-5042.	3.1	21
21	Shelf-life of infrared dry-roasted almonds. Food Chemistry, 2013, 138, 671-678.	8.2	45
22	<i>Salmonella</i> Interactions with Plants and Their Associated Microbiota. Phytopathology, 2013, 103, 316-325.	2.2	111
23	The Salmonella Transcriptome in Lettuce and Cilantro Soft Rot Reveals a Niche Overlap with the Animal Host Intestine. Applied and Environmental Microbiology, 2013, 79, 250-262.	3.1	95
24	Genes ycfR, sirA and yigG Contribute to the Surface Attachment of Salmonella enterica Typhimurium and Saintpaul to Fresh Produce. PLoS ONE, 2013, 8, e57272.	2.5	51
25	Distinct Transcriptional Profiles and Phenotypes Exhibited by Escherichia coli O157:H7 Isolates Related to the 2006 Spinach-Associated Outbreak. Applied and Environmental Microbiology, 2012, 78, 455-463.	3.1	50
26	Review of Current Technologies for Reduction of Salmonella Populations on Almonds. Food and Bioprocess Technology, 2012, 5, 2046-2057.	4.7	47
27	Survival characteristics of diarrheagenic <i>Escherichia coli</i> pathotypes and <i>Helicobacter pylori</i> during passage through the free-living ciliate, <i>Tetrahymena</i> sp FEMS Microbiology Ecology, 2012, 82, 574-583.	2.7	20
28	Functional Metagenomics of Escherichia coli O157:H7 Interactions with Spinach Indigenous Microorganisms during Biofilm Formation. PLoS ONE, 2012, 7, e44186.	2.5	38
29	Fluorescent Viability Stains to Probe the Metabolic Status of Aflatoxigenic Fungus in Dual Culture of Aspergillus flavus and Pichia anomala. Mycopathologia, 2011, 171, 133-138.	3.1	19
30	Distinct Acid Resistance and Survival Fitness Displayed by Curli Variants of Enterohemorrhagic Escherichia coli O157:H7. Applied and Environmental Microbiology, 2011, 77, 3685-3695.	3.1	52
31	Salmonella Biofilm Formation on Aspergillus niger Involves Cellulose – Chitin Interactions. PLoS ONE, 2011, 6, e25553.	2.5	55
32	Transcriptome Analysis of <i>Escherichia coli</i> O157:H7 Exposed to Lysates of Lettuce Leaves. Applied and Environmental Microbiology, 2010, 76, 1375-1387.	3.1	116
33	Interactions between Food-Borne Pathogens and Protozoa Isolated from Lettuce and Spinach. Applied and Environmental Microbiology, 2008, 74, 2518-2525.	3.1	91
34	Reduction of Salmonella Enteritidis Population Sizes on Almond Kernels with Infrared Heat. Journal of Food Protection, 2008, 71, 897-902.	1.7	78
35	Migration of Salmonella Enteritidis Phage Type 30 through Almond Hulls and Shells. Journal of Food Protection, 2008, 71, 397-401.	1.7	35
36	Binding of recombinant norovirus like particle to histo-blood group antigen on cells in the lumen of pig duodenum. Research in Veterinary Science, 2007, 83, 410-418.	1.9	46

MARIA T BRANDL

#	Article	IF	CITATIONS
37	Barcoding ciliates: a comprehensive study of 75 isolates of the genus Tetrahymena. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 2412-2423.	1.7	116
38	Fitness of Human Enteric Pathogens on Plants and Implications for Food Safety. Annual Review of Phytopathology, 2006, 44, 367-392.	7.8	507
39	Comparison of Survival of Campylobacter jejuni in the Phyllosphere with That in the Rhizosphere of Spinach and Radish Plants. Applied and Environmental Microbiology, 2004, 70, 1182-1189.	3.1	80
40	Microbiology of the Phyllosphere. Applied and Environmental Microbiology, 2003, 69, 1875-1883.	3.1	1,779
41	Fitness of Salmonella enterica serovar Thompson in the Cilantro Phyllosphere. Applied and Environmental Microbiology, 2002, 68, 3614-3621.	3.1	240
42	Biological Sensor for Sucrose Availability: Relative Sensitivities of Various Reporter Genes. Applied and Environmental Microbiology, 2001, 67, 1308-1317.	3.1	92
43	An Outbreak ofSalmonellaSerotype Thompson Associated with Fresh Cilantro. Journal of Infectious Diseases, 2001, 183, 984-987.	4.0	166
44	Detection on Surfaces and in Caco-2 Cells of Campylobacter jejuni Cells Transformed with New gfp, yfp , and cfp Marker Plasmids. Applied and Environmental Microbiology, 2000, 66, 5426-5436.	3.1	127
45	Differential Involvement of Indole-3-Acetic Acid Biosynthetic Pathways in Pathogenicity and Epiphytic Fitness of Erwinia herbicola pv. gypsophilae. Molecular Plant-Microbe Interactions, 1998, 11, 634-642.	2.6	159
46	Occurrence of Indole-3-Acetic Acid-Producing Bacteria on Pear Trees and Their Association with Fruit Russet. Phytopathology, 1998, 88, 1149-1157.	2.2	69
47	Biology of Foodborne Pathogens on Produce. , 0, , 55-83.		7