Carsten Weiss List of Publications by Year in descending order Source: https://exaly.com/author-pdf/4971663/publications.pdf Version: 2024-02-01 76 5,108 37 71 papers citations h-index g-index 79 79 79 8490 all docs docs citations times ranked citing authors | # | Article | IF | CITATIONS | |----|--|-------------|-----------| | 1 | Surface functionalisation-dependent adverse effects of metal nanoparticles and nanoplastics in zebrafish embryos. Environmental Science: Nano, 2022, 9, 375-392. | 2.2 | 10 | | 2 | Boron-rich, cytocompatible block copolymer nanoparticles by polymerization-induced self-assembly. Polymer Chemistry, 2021, 12, 50-56. | 1.9 | 12 | | 3 | Effects of incremental endosulfan sulfate exposure and high fat diet on lipid metabolism, glucose homeostasis and gut microbiota in mice. Environmental Pollution, 2021, 268, 115697. | 3.7 | 18 | | 4 | Air–Liquid Interface Exposure of Lung Epithelial Cells to Low Doses of Nanoparticles to Assess Pulmonary Adverse Effects. Nanomaterials, 2021, 11, 65. | 1.9 | 34 | | 5 | Differential Nanoparticle Sequestration by Macrophages and Scavenger Endothelial Cells Visualized <i>in Vivo</i> in Real-Time and at Ultrastructural Resolution. ACS Nano, 2020, 14, 1665-1681. | 7.3 | 62 | | 6 | Improving Quality in Nanoparticle-Induced Cytotoxicity Testing by a Tiered Inter-Laboratory Comparison Study. Nanomaterials, 2020, 10, 1430. | 1.9 | 11 | | 7 | Influence of wood species on toxicity of log-wood stove combustion aerosols: a parallel animal and air-liquid interface cell exposure study on spruce and pine smoke. Particle and Fibre Toxicology, 2020, 17, 27. | 2.8 | 38 | | 8 | Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS Nano, 2020, 14, 6383-6406. | 7.3 | 455 | | 9 | Nano Meets Micro-Translational Nanotechnology in Medicine: Nano-Based Applications for Early Tumor Detection and Therapy. Nanomaterials, 2020, 10, 383. | 1.9 | 30 | | 10 | Silica Nanoparticles Provoke Cell Death Independent of p53 and BAX in Human Colon Cancer Cells. Nanomaterials, 2019, 9, 1172. | 1.9 | 17 | | 11 | The protein corona suppresses the cytotoxic and pro-inflammatory response in lung epithelial cells and macrophages upon exposure to nanosilica. Archives of Toxicology, 2019, 93, 871-885. | 1.9 | 53 | | 12 | Biocompatibility of Amineâ€Functionalized Silica Nanoparticles: The Role of Surface Coverage. Small, 2019, 15, e1805400. | 5. 2 | 38 | | 13 | Straightforward access to biocompatible poly(2-oxazoline)-coated nanomaterials by polymerization-induced self-assembly. Chemical Communications, 2019, 55, 3741-3744. | 2.2 | 38 | | 14 | Ultraâ€Fast Synthesis of Multivalent Radical Nanoparticles by Ringâ€Opening Metathesis
Polymerizationâ€Induced Selfâ€Assembly. Angewandte Chemie - International Edition, 2019, 58, 4725-4731. | 7.2 | 57 | | 15 | Ultraschnelle Synthese multivalenter radikalischer Nanopartikel durch ringöffnende
Metathesepolymerisationsâ€induzierte Selbstorganisation. Angewandte Chemie, 2019, 131, 4775-4781. | 1.6 | 7 | | 16 | Air–Liquid Interface <i>In Vitro</i> Models for Respiratory Toxicology Research: Consensus Workshop and Recommendations. Applied in Vitro Toxicology, 2018, 4, 91-106. | 0.6 | 138 | | 17 | Microscopy-based high-throughput assays enable multi-parametric analysis to assess adverse effects of nanomaterials in various cell lines. Archives of Toxicology, 2018, 92, 633-649. | 1.9 | 41 | | 18 | Assessment of in vitro particle dosimetry models at the single cell and particle level by scanning electron microscopy. Journal of Nanobiotechnology, 2018, 16, 100. | 4.2 | 13 | | # | Article | IF | Citations | |----|---|-----|-----------| | 19 | Revisiting the stress paradigm for silica nanoparticles: decoupling of the anti-oxidative defense, pro-inflammatory response and cytotoxicity. Archives of Toxicology, 2018, 92, 2163-2174. | 1.9 | 24 | | 20 | Intrinsically Fluorescent, Stealth Polypyrazoline Nanoparticles with Large Stokes Shift for In Vivo Imaging. Small, 2018, 14, e1801571. | 5.2 | 25 | | 21 | Characterization of Nanoparticle Batch-To-Batch Variability. Nanomaterials, 2018, 8, 311. | 1.9 | 62 | | 22 | Autophagy induced by silica nanoparticles protects RAW264.7 macrophages from cell death. Toxicology, 2017, 379, 40-47. | 2.0 | 53 | | 23 | Female versus male biological identities of nanoparticles determine the interaction with immune cells in fish. Environmental Science: Nano, 2017, 4, 895-906. | 2.2 | 31 | | 24 | Validation of weak biological effects by round robin experiments: cytotoxicity/biocompatibility of SiO2 and polymer nanoparticles in HepG2 cells. Scientific Reports, 2017, 7, 4341. | 1.6 | 18 | | 25 | Amorphous Silica Particles Relevant in Food Industry Influence Cellular Growth and Associated Signaling Pathways in Human Gastric Carcinoma Cells. Nanomaterials, 2017, 7, 18. | 1.9 | 14 | | 26 | Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure. Scanning, 2017, 2017, 1-12. | 0.7 | 21 | | 27 | Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7
Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and
Refined Diesel Fuel. PLoS ONE, 2016, 11, e0157964. | 1.1 | 29 | | 28 | Toxicity testing of combustion aerosols at the air–liquid interface with a self-contained and easy-to-use exposure system. Journal of Aerosol Science, 2016, 96, 38-55. | 1.8 | 56 | | 29 | The nucleotide excision repair protein XPC is essential for bulky DNA adducts to promote interleukin-6 expression via the activation of p38-SAPK. Oncogene, 2016, 35, 908-918. | 2.6 | 8 | | 30 | Impact of Alternaria toxins on CYP1A1 expression in different human tumor cells and relevance for genotoxicity. Toxicology Letters, 2016, 240, 93-104. | 0.4 | 28 | | 31 | Toxicity of wood smoke particles in human A549 lung epithelial cells: the role of PAHs, soot and zinc. Archives of Toxicology, 2016, 90, 3029-3044. | 1.9 | 83 | | 32 | Particulate Matter from Both Heavy Fuel Oil and Diesel Fuel Shipping Emissions Show Strong
Biological Effects on Human Lung Cells at Realistic and Comparable In Vitro Exposure Conditions.
PLoS ONE, 2015, 10, e0126536. | 1.1 | 111 | | 33 | Silica nanoparticles are less toxic to human lung cells when deposited at the air–liquid interface compared to conventional submerged exposure. Beilstein Journal of Nanotechnology, 2014, 5, 1590-1602. | 1.5 | 72 | | 34 | Manufactured nanomaterials: categorization and approaches to hazard assessment. Archives of Toxicology, 2014, 88, 2191-2211. | 1.9 | 120 | | 35 | Characterization of indoor dust from Brazil and evaluation of the cytotoxicity in A549 lung cells. Environmental Geochemistry and Health, 2014, 36, 225-233. | 1.8 | 8 | | 36 | A strategy for grouping of nanomaterials based on key physico-chemical descriptors as a basis for safer-by-design NMs. Nano Today, 2014, 9, 266-270. | 6.2 | 164 | | # | Article | IF | Citations | |----|---|-----|-----------| | 37 | Track I. Biomedizinische Technik, 2014, 59, s490-648. | 0.9 | 1 | | 38 | Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages. Nanotoxicology, 2013, 7, 259-273. | 1.6 | 99 | | 39 | <i>In vitro</i> toxicity of amorphous silica nanoparticles in human colon carcinoma cells.
Nanotoxicology, 2013, 7, 274-293. | 1.6 | 70 | | 40 | Chk1 Targeting Reactivates PP2A Tumor Suppressor Activity in Cancer Cells. Cancer Research, 2013, 73, 6757-6769. | 0.4 | 41 | | 41 | Automatic Tuning of Image Segmentation Parameters by Means of Fuzzy Feature Evaluation. Advances in Intelligent Systems and Computing, 2013, , 459-467. | 0.5 | 5 | | 42 | The p27–Skp2 axis mediates glucocorticoid-induced cell cycle arrest in T-lymphoma cells. Cell Cycle, 2013, 12, 2625-2635. | 1.3 | 31 | | 43 | Identification of serum proteins bound to industrial nanomaterials. Toxicology Letters, 2012, 208, 41-50. | 0.4 | 90 | | 44 | Differential p38-dependent signalling in response to cellular stress and mitogenic stimulation in fibroblasts. Cell Communication and Signaling, 2012, 10, 6. | 2.7 | 51 | | 45 | The Alternaria mycotoxins alternariol and alternariol methyl ether induce cytochrome P450 1A1 and apoptosis in murine hepatoma cells dependent on the aryl hydrocarbon receptor. Archives of Toxicology, 2012, 86, 625-632. | 1.9 | 53 | | 46 | Mouse hepatoma cell lines differing in aryl hydrocarbon receptor-mediated signaling have different activities for glucuronidation. Archives of Toxicology, 2012, 86, 643-649. | 1.9 | 11 | | 47 | Zebrafish embryos as an alternative to animal experimentsâ€"A commentary on the definition of the onset of protected life stages in animal welfare regulations. Reproductive Toxicology, 2012, 33, 128-132. | 1.3 | 491 | | 48 | Role and interaction of p53, BAX and the stress-activated protein kinases p38 and JNK in benzo(a)pyrene-diolepoxide induced apoptosis in human colon carcinoma cells. Archives of Toxicology, 2012, 86, 329-337. | 1.9 | 41 | | 49 | c-Jun localizes to the nucleus independent of its phosphorylation by and interaction with JNK and vice versa promotes nuclear accumulation of JNK. Biochemical and Biophysical Research Communications, 2011, 407, 735-740. | 1.0 | 36 | | 50 | Uptake and intracellular localization of submicron and nano-sized SiO2 particles in HeLa cells. Archives of Toxicology, 2011, 85, 813-826. | 1.9 | 122 | | 51 | A special issue on nanotoxicology. Archives of Toxicology, 2011, 85, 705-706. | 1.9 | 23 | | 52 | Anti-oxidative and inflammatory responses induced by fly ash particles and carbon black in lung epithelial cells. Analytical and Bioanalytical Chemistry, 2011, 401, 3197-3212. | 1.9 | 36 | | 53 | Regulation of the arachidonic acid mobilization in macrophages by combustion-derived particles. Particle and Fibre Toxicology, 2011, 8, 23. | 2.8 | 27 | | 54 | Abstract 4194: Constitutive DNA-damage signaling promotes cancer cell proliferation through Chk1-CIP2A pathway independent of ATM-ATR. , $2011, \ldots$ | | 0 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 55 | Polybrominated diphenyl ethers and arylhydrocarbon receptor agonists: Different toxicity and target gene expression. Toxicology Letters, 2010, 198, 119-126. | 0.4 | 28 | | 56 | Radiation Induced Cytoplasmic Signaling. , 2010, , 2225-2230. | | 0 | | 57 | Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reproductive Toxicology, 2009, 28, 245-253. | 1.3 | 240 | | 58 | Influence of aryl hydrocarbon- (Ah) receptor and genotoxins on DNA repair gene expression and cell survival of mouse hepatoma cells. Toxicology, 2009, 259, 91-96. | 2.0 | 23 | | 59 | Circadian rhythms and chemical carcinogenesis: Potential link. An overview. Mutation Research -
Genetic Toxicology and Environmental Mutagenesis, 2009, 680, 83-86. | 0.9 | 2 | | 60 | Lung toxicity determination byin vitroexposure at the air liquid interface with an integrated online dose measurement. Journal of Physics: Conference Series, 2009, 170, 012008. | 0.3 | 27 | | 61 | In Vitro Exposure Systems and Bioassays for the Assessment of Toxicity of Nanoparticles to the Human Lung. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2008, 3, 319-329. | 0.5 | 37 | | 62 | TCDD deregulates contact inhibition in rat liver oval cells via Ah receptor, JunD and cyclin A. Oncogene, 2008, 27, 2198-2207. | 2.6 | 72 | | 63 | Supreme EnLIGHTenment: Damage Recognition and Signaling in the Mammalian UV Response. Molecular Cell, 2008, 29, 279-290. | 4.5 | 83 | | 64 | A technical mixture of 2,2′,4,4′-tetrabromo diphenyl ether (BDE47) and brominated furans triggers aryl hydrocarbon receptor (AhR) mediated gene expression and toxicity. Chemosphere, 2008, 73, 209-215. | 4.2 | 50 | | 65 | The aryl hydrocarbon receptor-dependent deregulation of cell cycle control induced by polycyclic aromatic hydrocarbons in rat liver epithelial cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 615, 87-97. | 0.4 | 71 | | 66 | TCDD induces c-jun expression via a novel Ah (dioxin) receptor-mediated p38–MAPK-dependent pathway. Oncogene, 2005, 24, 4975-4983. | 2.6 | 87 | | 67 | p38α MAPK is required for contact inhibition. Oncogene, 2005, 24, 7941-7945. | 2.6 | 68 | | 68 | Aryl hydrocarbon receptor activation by cAMP vs. dioxin: Divergent signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9218-9223. | 3.3 | 155 | | 69 | Deregulated Repression of c-Jun Provides a Potential Link to its Role in Tumorigenesis. Cell Cycle, 2004, 3, 109-111. | 1.3 | 40 | | 70 | DNA damage induces downregulation of histone gene expression through the G1 checkpoint pathway. EMBO Journal, 2004, 23, 1133-1143. | 3.5 | 110 | | 71 | JNK phosphorylation relieves HDAC3-dependent suppression of the transcriptional activity of c-Jun. EMBO Journal, 2003, 22, 3686-3695. | 3.5 | 129 | | 72 | Transrepression of AP-1 by nuclear receptors in Drosophila. Mechanisms of Development, 2002, 115, 91-100. | 1.7 | 4 | | # | Article | IF | CITATION | |----|--|-----|----------| | 73 | Menin uncouples Elk-1, JunD and c-Jun phosphorylation from MAP kinase activation. Oncogene, 2002, 21, 6434-6445. | 2.6 | 82 | | 74 | The DEXD/H-box RNA helicase RHII/Gu is a co-factor for c-Jun-activated transcription. EMBO Journal, 2002, 21, 451-460. | 3.5 | 96 | | 75 | p27Kip1 induction and inhibition of proliferation by the intracellular Ah receptor in developing thymus and hepatoma cells. Genes and Development, 1999, 13, 1742-1753. | 2.7 | 313 | | 76 | Complementation of Ah Receptor Deficiency in Hepatoma Cells: Negative Feedback Regulation and Cell Cycle Control by the Ah Receptor. Experimental Cell Research, 1996, 226, 154-163. | 1.2 | 160 |