Igor Polozov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4971659/publications.pdf

Version: 2024-02-01

566801 500791 1,029 38 15 28 citations h-index g-index papers 40 40 40 865 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Microstructure and mechanical properties of additive manufactured copper alloy. Materials Letters, 2016, 179, 38-41.	1.3	154
2	The Effect of Layer Thickness at Selective Laser Melting. Procedia Engineering, 2017, 174, 126-134.	1.2	132
3	Synthesis of Ti-5Al, Ti-6Al-7Nb, and Ti-22Al-25Nb alloys from elemental powders using powder-bed fusion additive manufacturing. Journal of Alloys and Compounds, 2018, 763, 436-445.	2.8	81
4	In-situ synthesis of Ti2AlNb-based intermetallic alloy by selective laser melting. Journal of Alloys and Compounds, 2017, 704, 434-442.	2.8	74
5	Microstructure and Mechanical Properties of Inconel 718 Produced by SLM and Subsequent Heat Treatment. Key Engineering Materials, 0, 651-653, 665-670.	0.4	57
6	Microstructure and Mechanical Properties of Ti-6Al-4V Manufactured by SLM. Key Engineering Materials, 0, 651-653, 677-682.	0.4	56
7	Anisotropy of mechanical properties of products manufactured using selective laser melting of powdered materials. Russian Journal of Non-Ferrous Metals, 2017, 58, 389-395.	0.2	51
8	Selective Laser Melting of Ti2AlNb-based intermetallic alloy using elemental powders: Effect of process parameters and post-treatment on microstructure, composition, and properties. Intermetallics, 2019, 112, 106554.	1.8	49
9	Producing hip implants of titanium alloys by additive manufacturing. International Journal of Bioprinting, 2016, 2, .	1.7	45
10	Use of Additive Techniques for Preparing Individual Components of Titanium Alloy Joint Endoprostheses. Bio-Medical Engineering, 2016, 50, 202-205.	0.3	34
11	Fabrication of Silicon Carbide Fiber-Reinforced Silicon Carbide Matrix Composites Using Binder Jetting Additive Manufacturing from Irregularly-Shaped and Spherical Powders. Materials, 2020, 13, 1766.	1.3	34
12	Synthesis of titanium orthorhombic alloy using binder jetting additive manufacturing. Materials Letters, 2019, 243, 88-91.	1.3	32
13	Selective laser melting of heat-resistant Ni-based alloy. Non-ferrous Metals, 2015, , 32-35.	0.4	25
14	A laser ultrasonic technique for studying the properties of products manufactured by additive technologies. Russian Journal of Nondestructive Testing, 2016, 52, 303-309.	0.3	23
15	Microstructure, densification, and mechanical properties of titanium intermetallic alloy manufactured by laser powder bed fusion additive manufacturing with high-temperature preheating using gas atomized and mechanically alloyed plasma spheroidized powders. Additive Manufacturing, 2020. 34. 101374.	1.7	22
16	Selective laser melting of titanium alloy and manufacturing of gas-turbine engine part blanks. Tsvetnye Metally, 2015, , 76-80.	0.1	21
17	Synthesis of titanium orthorhombic alloy spherical powders by mechanical alloying and plasma spheroidization processes. Materials Letters, 2019, 256, 126615.	1.3	19
18	Additive Manufacturing of Ti-48Al-2Cr-2Nb Alloy Using Gas Atomized and Mechanically Alloyed Plasma Spheroidized Powders. Materials, 2020, 13, 3952.	1.3	15

#	Article	IF	Citations
19	Binder jetting additive manufacturing of 420 stainless steel: Densification during sintering and effect of heat treatment on microstructure and hardness. Materials Today: Proceedings, 2020, 30, 592-595.	0.9	14
20	Evolution of structure and properties of heat-resistant nickel alloy after selective laser melting, hot isostatic pressing and heat treatment. Tsvetnye Metally, 2017, , 77-82.	0.1	13
21	Layer thickness influence on the Inconel 718 alloy microstructure and properties under selective laser melting. Tsvetnye Metally, 2016, , 81-86.	0.1	12
22	Structure and Properties of Ti/Ti64 Graded Material Manufactured by Laser Powder Bed Fusion. Materials, 2021, 14, 6140.	1.3	11
23	In situ synthesized Ti2AlNb-based composites produced by selective laser melting by addition of SiC-whiskers. Materials Letters, 2021, 297, 129956.	1.3	10
24	Microstructure and Mechanical Properties of NiTi-Based Eutectic Shape Memory Alloy Produced via Selective Laser Melting In-Situ Alloying by Nb. Materials, 2021, 14, 2696.	1.3	7
25	Numerical simulation of the inelastic behavior of a structurally graded material. Letters on Materials, 2019, 9, 97-102.	0.2	7
26	Selective Laser Melting of the Intermetallic Titanium Alloy. Russian Journal of Non-Ferrous Metals, 2019, 60, 186-193.	0.2	6
27	Mitigating Inhomogeneity and Tailoring the Microstructure of Selective Laser Melted Titanium Orthorhombic Alloy by Heat Treatment, Hot Isostatic Pressing, and Multiple Laser Exposures. Materials, 2021, 14, 4946.	1.3	6
28	Formation of Structure in Titanium Lightweight Structures Made by Selective Laser Melting. Materials Science Forum, 0, 946, 990-995.	0.3	4
29	Investigation of Ti-6Al-4V Alloy <i>In Situ</i> Manufactured Using Selective Laser Melting from Elemental Powder Mixture. Solid State Phenomena, 0, 299, 646-651.	0.3	3
30	Tailoring microstructure and properties of graded Ti-22Al-25Nb/SiC and Ti-22Al-25Nb/Ti-6Al-4V alloys by in-situ synthesis during selective laser melting. Materials Today: Proceedings, 2020, 30, 672-678.	0.9	2
31	Gamma-Titanium Intermetallic Alloy Produced by Selective Laser Melting Using Mechanically Alloyed and Plasma Spheroidized Powders. Minerals, Metals and Materials Series, 2020, , 375-383.	0.3	2
32	Effect of heat treatment on microstructure and properties of Ti-22Al-25Nb alloy fabricated by Selective Laser Melting. , 2019, , .		1
33	INVESTIGATION OF MICROSTRUCRE AND MECHANICAL PROPERTIES OF VT6 TITANIUM ALLOY LATTICE STRUCTURES PRODUCED BY SELECTIVE LASER MELTING. Tekhnologiya Metallov, 2019, .	0.1	0
34	Fabrication of titanium orthorhombic alloy spherical powders by mechanical alloying and plasma spheroidization for application in additive manufacturing processes. , 2019, , .		0
35	DEVELOPMENT OF SELECTIVE LASER MELTING PARAMETERS FOR EPITAXIAL CRYSTAL GROWTH., 2019, , .		0
36	FUNCTIONALLY GRADED LATTICE STRUCTURES MADE FROM TITANIUM ALLOY BY SELECTIVE LASER MELTING. , 2019, , .		0

3

#	Article	IF	CITATIONS
37	THE BINDER JETTING OF Nb-BASED IN-SITU COMPOSITE. , 2019, , .		O
38	Synthesis of Ti48Al2Cr2Nb intermetallic alloy powder for Additive Manufacturing by mechanical alloying and plasma spheroidization. , 2019, , .		0