
Wietse Boer De Boer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4971655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews, 2005, 29, 795-811.	3.9	1,401
2	Nitrification in acid soils: micro-organisms and mechanisms. Soil Biology and Biochemistry, 2001, 33, 853-866.	4.2	644
3	Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 2017, 8, 14349.	5.8	555
4	Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek, 2002, 81, 509-520.	0.7	520
5	The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant and Soil, 2009, 321, 189-212.	1.8	405
6	Volatile affairs in microbial interactions. ISME Journal, 2015, 9, 2329-2335.	4.4	372
7	A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiology Reviews, 2013, 37, 477-494.	3.9	277
8	Ectomycorrhizal <i><scp>C</scp>ortinarius</i> species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytologist, 2014, 203, 245-256.	3.5	256
9	Fungal biomass development in a chronosequence of land abandonment. Soil Biology and Biochemistry, 2006, 38, 51-60.	4.2	216
10	Degradation of ethinyl estradiol by nitrifying activated sludge. Chemosphere, 2000, 41, 1239-1243.	4.2	214
11	Calling from distance: attraction of soil bacteria by plant root volatiles. ISME Journal, 2018, 12, 1252-1262.	4.4	195
12	Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture. ISME Journal, 2017, 11, 2294-2304.	4.4	177
13	Reduction of rare soil microbes modifies plant–herbivore interactions. Ecology Letters, 2010, 13, 292-301.	3.0	176
14	Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi. ISME Journal, 2010, 4, 872-881.	4.4	172
15	Transcriptional and antagonistic responses of <i>Pseudomonas fluorescens</i> Pf0-1 to phylogenetically different bacterial competitors. ISME Journal, 2011, 5, 973-985.	4.4	166
16	Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME Journal, 2019, 13, 738-751.	4.4	166
17	Volatile-mediated interactions between phylogenetically different soil bacteria. Frontiers in Microbiology, 2014, 5, 289.	1.5	158
18	Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biology and Biochemistry, 2005, 37, 349-357.	4.2	157

#	Article	IF	CITATIONS
19	Neglected role of fungal community composition in explaining variation in wood decay rates. Ecology, 2015, 96, 124-133.	1.5	153
20	Microbial Small Talk: Volatiles in Fungal–Bacterial Interactions. Frontiers in Microbiology, 2015, 6, 1495.	1.5	149
21	Microbial Community Composition Affects Soil Fungistasis. Applied and Environmental Microbiology, 2003, 69, 835-844.	1.4	147
22	Volatiles produced by the mycophagous soil bacterium <i>Collimonas</i> . FEMS Microbiology Ecology, 2014, 87, 639-649.	1.3	139
23	Anti-fungal properties of chitinolytic dune soil bacteria. Soil Biology and Biochemistry, 1998, 30, 193-203.	4.2	135
24	In vitro suppression of fungi caused by combinations of apparently non-antagonistic soil bacteria. FEMS Microbiology Ecology, 2007, 59, 177-185.	1.3	127
25	Soil biotic legacy effects of extreme weather events influence plant invasiveness. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9835-9838.	3.3	125
26	¹³ C pulseâ€labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starchâ€modified potato (<i>Solanum tuberosum</i>) cultivar and its parental isoline. New Phytologist, 2012, 194, 784-799.	3.5	123
27	Collimonas fungivorans gen. nov., sp. nov., a chitinolytic soil bacterium with the ability to grow on living fungal hyphae. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 857-864.	0.8	122
28	Fungistasis and general soil biostasis – A new synthesis. Soil Biology and Biochemistry, 2011, 43, 469-477.	4.2	122
29	Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil. FEMS Microbiology Ecology, 2008, 63, 181-191.	1.3	118
30	The bacterial genus <i>Collimonas</i> : mycophagy, weathering and other adaptive solutions to life in oligotrophic soil environments. Environmental Microbiology, 2010, 12, 281-292.	1.8	118
31	Nitrous oxide production and nitrification in acidic soil from a dutch coniferous forest. Soil Biology and Biochemistry, 1993, 25, 343-347.	4.2	115
32	Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Scientific Reports, 2017, 7, 862.	1.6	115
33	The prey's scent – Volatile organic compound mediated interactions between soil bacteria and their protist predators. ISME Journal, 2017, 11, 817-820.	4.4	115
34	The chemolithotrophic ammonium-oxidizing community in a nitrogen-saturated acid forest soil in relation to ph-dependent nitrifying activity. Soil Biology and Biochemistry, 1992, 24, 229-234.	4.2	110
35	Impact of interspecific interactions on antimicrobial activity among soil bacteria. Frontiers in Microbiology, 2014, 5, 567.	1.5	109
36	Nonâ€random species loss in bacterial communities reduces antifungal volatile production. Ecology, 2015, 96, 2042-2048.	1.5	109

#	Article	IF	CITATIONS
37	Dual transcriptional profiling of a bacterial/fungal confrontation: <i>Collimonas fungivorans</i> versus <i>Aspergillus niger</i> . ISME Journal, 2011, 5, 1494-1504.	4.4	105
38	Phylogenetic composition and properties of bacteria coexisting with the fungus <i>Hypholoma fasciculare</i> in decaying wood. ISME Journal, 2009, 3, 1218-1221.	4.4	104
39	Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Scientific Reports, 2016, 6, 27756.	1.6	101
40	Autotrophic nitrification in a fertilized acid heath soil. Soil Biology and Biochemistry, 1988, 20, 845-850.	4.2	99
41	Controls on Coarse Wood Decay in Temperate Tree Species: Birth of the LOGLIFE Experiment. Ambio, 2012, 41, 231-245.	2.8	92
42	Priming of soil organic matter: Chemical structure of added compounds is more important than the energy content. Soil Biology and Biochemistry, 2017, 108, 41-54.	4.2	88
43	Volatiles in Inter-Specific Bacterial Interactions. Frontiers in Microbiology, 2015, 6, 1412.	1.5	84
44	Low abundant soil bacteria can be metabolically versatile and fast growing. Ecology, 2017, 98, 555-564.	1.5	83
45	The bioenergetics of ammonia and hydroxylamine oxidation in Nitrosomonas europaea at acid and alkaline pH. Archives of Microbiology, 1992, 157, 194-199.	1.0	82
46	Suppression of soil-borne Fusarium pathogens of peanut by intercropping with the medicinal herb Atractylodes lancea. Soil Biology and Biochemistry, 2018, 116, 120-130.	4.2	81
47	Initial decay of woody fragments in soil is influenced by size, vertical position, nitrogen availability and soil origin. Plant and Soil, 2007, 301, 189-201.	1.8	79
48	A fragrant neighborhood: volatile mediated bacterial interactions in soil. Frontiers in Microbiology, 2015, 6, 1212.	1.5	77
49	Dinner in the dark: Illuminating drivers of soil organic matter decomposition. Soil Biology and Biochemistry, 2017, 105, 45-48.	4.2	76
50	Nitrate production in nitrogen-saturated acid forest soils: Vertical distribution and characteristics. Soil Biology and Biochemistry, 1992, 24, 235-240.	4.2	75
51	The sapro-rhizosphere: Carbon flow from saprotrophic fungi into fungus-feeding bacteria. Soil Biology and Biochemistry, 2016, 102, 14-17.	4.2	75
52	Ureolytic nitrification at low pH by Nitrosospira spec Archives of Microbiology, 1989, 152, 178-181.	1.0	71
53	Inter-specific Interactions Between Carbon-limited Soil Bacteria Affect Behavior and Gene Expression. Microbial Ecology, 2009, 58, 36-46.	1.4	71
54	In situ dynamics of soil fungal communities under different genotypes of potato, including a genetically modified cultivar. Soil Biology and Biochemistry, 2010, 42, 2211-2223.	4.2	71

#	Article	IF	CITATIONS
55	Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition. Soil Biology and Biochemistry, 1997, 29, 1625-1632.	4.2	70
56	Plant–soil feedbacks of exotic plant species across life forms: a meta-analysis. Biological Invasions, 2014, 16, 2551-2561.	1.2	70
57	Exploring bacterial interspecific interactions for discovery of novel antimicrobial compounds. Microbial Biotechnology, 2017, 10, 910-925.	2.0	70
58	The hidden potential of saprotrophic fungi in arable soil: Patterns of short-term stimulation by organic amendments. Applied Soil Ecology, 2020, 147, 103434.	2.1	70
59	Growth of Chitinolytic Dune Soil β-Subclass Proteobacteria in Response to Invading Fungal Hyphae. Applied and Environmental Microbiology, 2001, 67, 3358-3362.	1.4	69
60	Efficient mineral weathering is a distinctive functional trait of the bacterial genus Collimonas. Soil Biology and Biochemistry, 2009, 41, 2178-2186.	4.2	69
61	Nitrification in Dutch heathland soils. Plant and Soil, 1990, 127, 193-200.	1.8	67
62	Impact of Matric Potential and Pore Size Distribution on Growth Dynamics of Filamentous and Non-Filamentous Soil Bacteria. PLoS ONE, 2013, 8, e83661.	1.1	67
63	Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles. Frontiers in Microbiology, 2015, 6, 701.	1.5	67
64	Acidicapsa borealis gen. nov., sp. nov. and Acidicapsa ligni sp. nov., subdivision 1 Acidobacteria from Sphagnum peat and decaying wood. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 1512-1520.	0.8	66
65	Urea stimulated autotrophic nitrification in suspensions of fertilized, acid heath soil. Soil Biology and Biochemistry, 1989, 21, 349-354.	4.2	65
66	A 3-Year Study Reveals That Plant Growth Stage, Season and Field Site Affect Soil Fungal Communities while Cultivar and GM-Trait Have Minor Effects. PLoS ONE, 2012, 7, e33819.	1.1	64
67	Priorities for research in soil ecology. Pedobiologia, 2017, 63, 1-7.	0.5	64
68	Decomposition of mixtures of cover crop residues increases microbial functional diversity. Geoderma, 2020, 361, 114060.	2.3	64
69	Genomic comparison of chitinolytic enzyme systems from terrestrial and aquatic bacteria. Environmental Microbiology, 2016, 18, 38-49.	1.8	63
70	Restoration of species-rich grasslands on ex-arable land: Seed addition outweighs soil fertility reduction. Biological Conservation, 2008, 141, 2208-2217.	1.9	61
71	Ammonium-oxidation at low pH by a chemolithotrophic bacterium belonging to the genus Nitrosospira. Soil Biology and Biochemistry, 1995, 27, 127-132.	4.2	60
72	Baiting of rhizosphere bacteria with hyphae of common soil fungi reveals a diverse group of potentially mycophagous secondary consumers. Soil Biology and Biochemistry, 2015, 88, 73-82.	4.2	58

#	Article	IF	CITATIONS
73	Evaluation of a simple, non-alkaline extraction protocol to quantify soil ergosterol. Pedobiologia, 2006, 50, 293-300.	0.5	57
74	Exploring the genomic traits of fungus-feeding bacterial genus Collimonas. BMC Genomics, 2015, 16, 1103.	1.2	57
75	Context dependency and saturating effects of loss of rare soil microbes on plant productivity. Frontiers in Plant Science, 2015, 6, 485.	1.7	56
76	Contribution of nitrification and denitrification to the no and N2O emissions of an acid forest soil, a river sediment and a fertilized grassland soil. Soil Biology and Biochemistry, 1997, 29, 1655-1664.	4.2	55
77	Response of the chitinolytic microbial community to chitin amendments of dune soils. Biology and Fertility of Soils, 1999, 29, 170-177.	2.3	54
78	Constraints on development of fungal biomass and decomposition processes during restoration of arable sandy soils. Soil Biology and Biochemistry, 2006, 38, 2890-2902.	4.2	54
79	Pathogen suppression by microbial volatile organic compounds in soils. FEMS Microbiology Ecology, 2019, 95, .	1.3	54
80	Two types of chemolithotrophic nitrification in acid heathland humus. Plant and Soil, 1989, 119, 229-235.	1.8	53
81	Methylovirgula ligni gen. nov., sp. nov., an obligately acidophilic, facultatively methylotrophic bacterium with a highly divergent mxaF gene. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 2538-2545.	0.8	53
82	Comparative genomics of the pIPO2/pSB102 family of environmental plasmids: sequence, evolution, and ecology of pTer331 isolated from Collimonas fungivorans Ter331. FEMS Microbiology Ecology, 2008, 66, 45-62.	1.3	50
83	Volatile-mediated suppression of plant pathogens is related to soil properties and microbial community composition. Soil Biology and Biochemistry, 2018, 117, 164-174.	4.2	50
84	Nitrification in Dutch heathland soils. Plant and Soil, 1990, 127, 179-192.	1.8	49
85	Different Selective Effects on Rhizosphere Bacteria Exerted by Genetically Modified versus Conventional Potato Lines. PLoS ONE, 2013, 8, e67948.	1.1	49
86	Volatileâ€mediated antagonism of soil bacterial communities against fungi. Environmental Microbiology, 2020, 22, 1025-1035.	1.8	49
87	'Root-food' and the rhizosphere microbial community composition. New Phytologist, 2006, 170, 3-6.	3.5	48
88	The capacity to comigrate with Lyophyllum sp. strain Karsten through different soils is spread among several phylogenetic groups within the genus Burkholderia. Soil Biology and Biochemistry, 2012, 50, 221-233.	4.2	48
89	Biosynthetic genes and activity spectrum of antifungal polyynes from <scp> <i>C</i></scp> <i>ollimonas fungivorans</i> â€ <scp>T</scp> er331. Environmental Microbiology, 2014, 16, 1334-1345.	1.8	48
90	Upscaling of fungal–bacterial interactions: from the lab to the field. Current Opinion in Microbiology, 2017, 37, 35-41.	2.3	47

#	Article	IF	CITATIONS
91	Insect frass and exuviae to promote plant growth and health. Trends in Plant Science, 2022, 27, 646-654.	4.3	47
92	Filipin is a reliable in situ marker of ergosterol in the plasma membrane of germinating conidia (spores) of Penicillium discolor and stains intensively at the site of germ tube formation. Journal of Microbiological Methods, 2008, 74, 64-73.	0.7	45
93	Winter cover crop legacy effects on litter decomposition act through litter quality and microbial community changes. Journal of Applied Ecology, 2019, 56, 132-143.	1.9	45
94	Nitrification and nitrous oxide production potentials in aerobic soil samples from the soil profile of a Finnish coniferous site receiving high ammonium deposition. FEMS Microbiology Ecology, 1993, 13, 113-121.	1.3	44
95	Exploring the reservoir of potential fungal plant pathogens in agricultural soil. Applied Soil Ecology, 2017, 121, 152-160.	2.1	44
96	Reciprocal Effects of Litter from Exotic and Congeneric Native Plant Species via Soil Nutrients. PLoS ONE, 2012, 7, e31596.	1.1	44
97	Possible role of reactive chlorine in microbial antagonism and organic matter chlorination in terrestrial environments. Environmental Microbiology, 2009, 11, 1330-1339.	1.8	43
98	Unexpected role of canonical aerobic methanotrophs in upland agricultural soils. Soil Biology and Biochemistry, 2019, 131, 1-8.	4.2	42
99	Nitrosomonas europaea-like bacteria detected as the dominant β-subclass Proteobacteria ammonia oxidisers in reference and limed acid forest soils. Soil Biology and Biochemistry, 2002, 34, 1047-1050.	4.2	41
100	Oxalic acid: a signal molecule for fungusâ€feeding bacteria of the genus <scp><i>C</i></scp> <i>ollimonas</i> ?. Environmental Microbiology Reports, 2015, 7, 709-714.	1.0	41
101	Legacy effects of diversity in space and time driven by winter cover crop biomass and nitrogen concentration. Journal of Applied Ecology, 2018, 55, 299-310.	1.9	40
102	Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bioâ€based residue application. Global Change Biology, 2015, 21, 3864-3879.	4.2	39
103	Patterns of natural fungal community assembly during initial decay of coniferous and broadleaf tree logs. Ecosphere, 2016, 7, e01393.	1.0	38
104	Controlling the Microbiome: Microhabitat Adjustments for Successful Biocontrol Strategies in Soil and Human Gut. Frontiers in Microbiology, 2016, 7, 1079.	1.5	37
105	Harnessing the microbiome to control plant parasitic weeds. Current Opinion in Microbiology, 2019, 49, 26-33.	2.3	37
106	Collimonas arenae sp. nov. and Collimonas pratensis sp. nov., isolated from (semi-)natural grassland soils. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 414-419.	0.8	37
107	Variability of N mineralization and nitrification in a simple, simulated microbial forest soil community. Soil Biology and Biochemistry, 1996, 28, 203-211.	4.2	36
108	A molecular biological protocol to distinguish potentially human pathogenic Stenotrophomonas maltophilia from plant-associated Stenotrophomonas rhizophila. Environmental Microbiology, 2005, 7, 1853-1858.	1.8	36

#	Article	IF	CITATIONS
109	Antifungal Rhizosphere Bacteria Can increase as Response to the Presence of Saprotrophic Fungi. PLoS ONE, 2015, 10, e0137988.	1.1	36
110	In situ net N transformations in pine, fir, and oak stands of different ages on acid sandy soil, 3 years after liming. Biology and Fertility of Soils, 1993, 15, 120-126.	2.3	35
111	Do genetic modifications in crops affect soil fungi? a review. Biology and Fertility of Soils, 2014, 50, 433-446.	2.3	35
112	Effects of bioâ€based residue amendments on greenhouse gas emission from agricultural soil are stronger than effects of soil type with different microbial community composition. GCB Bioenergy, 2017, 9, 1707-1720.	2.5	35
113	Effect of vegetation manipulation of abandoned arable land on soil microbial properties. Biology and Fertility of Soils, 2000, 31, 121-127.	2.3	34
114	Specific Detection and Real-Time PCR Quantification of Potentially Mycophagous Bacteria Belonging to the Genus Collimonas in Different Soil Ecosystems. Applied and Environmental Microbiology, 2007, 73, 4191-4197.	1.4	34
115	Soil and Freshwater and Marine Sediment Food Webs: Their Structure and Function. BioScience, 2013, 63, 35-42.	2.2	34
116	Comparison of nutrient acquisition in exotic plant species and congeneric natives. Journal of Ecology, 2011, 99, 1308-1315.	1.9	33
117	No Apparent Costs for Facultative Antibiotic Production by the Soil Bacterium Pseudomonas fluorescens Pf0-1. PLoS ONE, 2011, 6, e27266.	1.1	33
118	Mechanism of antibacterial activity of the white-rot fungus <i>Hypholoma fasciculare</i> colonizing wood. Canadian Journal of Microbiology, 2010, 56, 380-388.	0.8	32
119	Pairwise Transcriptomic Analysis of the Interactions Between the Ectomycorrhizal Fungus Laccaria bicolor S238N and Three Beneficial, Neutral and Antagonistic Soil Bacteria. Microbial Ecology, 2015, 69, 146-159.	1.4	30
120	Fungus-associated bacteriome in charge of their host behavior. Fungal Genetics and Biology, 2017, 102, 38-48.	0.9	30
121	Relationship between home-field advantage of litter decomposition and priming of soil organic matter. Soil Biology and Biochemistry, 2018, 126, 49-56.	4.2	30
122	Suppression of hyphal growth of soil-borne fungi by dune soils from vigorous and declining stands of Ammophila arenaria. New Phytologist, 1998, 138, 107-116.	3.5	29
123	Competition Increases Sensitivity of Wheat (Triticum aestivum) to Biotic Plant-Soil Feedback. PLoS ONE, 2013, 8, e66085.	1.1	29
124	Decomposing cover crops modify root-associated microbiome composition and disease tolerance of cash crop seedlings. Soil Biology and Biochemistry, 2021, 160, 108343.	4.2	29
125	Quantitative Determination of the Spatial Distribution of <i>Nitrosomonas europaea</i> and <i>Nitrobacter agilis</i> Cells Immobilized in κ-Carrageenan Gel Beads by a Specific Fluorescent-Antibody Labelling Technique. Applied and Environmental Microbiology, 1993, 59, 1951-1954.	1.4	29
126	Rhizosphere bacteria from sites with higher fungal densities exhibit greater levels of potential antifungal properties. Soil Biology and Biochemistry, 2008, 40, 1542-1544.	4.2	27

#	Article	IF	CITATIONS
127	Chapter 8 Interactions between saprotrophic basidiomycetes and bacteria. British Mycological Society Symposia Series, 2008, 28, 143-153.	0.5	26
128	Chitin- and Keratin-Rich Soil Amendments Suppress Rhizoctonia solani Disease via Changes to the Soil Microbial Community. Applied and Environmental Microbiology, 2021, 87, .	1.4	25
129	Heterodera schachtii Nematodes Interfere with Aphid-Plant Relations on Brassica oleracea. Journal of Chemical Ecology, 2013, 39, 1193-1203.	0.9	24
130	Mycophagous growth of <i>Collimonas</i> bacteria in natural soils, impact on fungal biomass turnover and interactions with mycophagous <i>Trichoderma</i> fungi. ISME Journal, 2009, 3, 190-198.	4.4	22
131	Methods for Baiting and Enriching Fungus-Feeding (Mycophagous) Rhizosphere Bacteria. Frontiers in Microbiology, 2015, 6, 1416.	1.5	22
132	Effect of the amount of organic trigger compounds, nitrogen and soil microbial biomass on the magnitude of priming of soil organic matter. PLoS ONE, 2019, 14, e0216730.	1.1	22
133	Biological activities associated with the volatile compound 2,5-bis(1-methylethyl)-pyrazine. FEMS Microbiology Letters, 2019, 366, .	0.7	22
134	Concentration and vertical distribution of total soil phosphorus in relation to time of abandonment of arable fields. Nutrient Cycling in Agroecosystems, 2007, 79, 73-79.	1.1	21
135	Strategies to Maintain Natural Biocontrol of Soil-Borne Crop Diseases During Severe Drought and Rainfall Events. Frontiers in Microbiology, 2018, 9, 2279.	1.5	21
136	Comparative genomics of bacteria from the genus <i>Collimonas</i> : linking (dis)similarities in gene content to phenotypic variation and conservation. Environmental Microbiology Reports, 2012, 4, 424-432.	1.0	18
137	The effect of acetylene on N transformations in an acid oak-beech soil. Plant and Soil, 1993, 149, 292-296.	1.8	17
138	Soil nitrogen transformations and nitrate utilization by Deschampsia flexuosa (L.) Trin. at two contrasting heathland sites. Plant and Soil, 1995, 176, 81-93.	1.8	17
139	Possible Mechanism for Spontaneous Establishment of <i>Calluna vulgaris </i> in a Recently Abandoned Agricultural Field. Restoration Ecology, 2009, 17, 308-313.	1.4	17
140	Secondary transport of amino acids in Nitrosomonas europaea. Archives of Microbiology, 1992, 157, 389-393.	1.0	16
141	Phylogeny-function analysis of (meta)genomic libraries: screening for expression of ribosomal RNA genes by large-insert library fluorescent in situ hybridization (LIL-FISH). Environmental Microbiology, 2004, 6, 990-998.	1.8	16
142	Identification and characterization of genes underlying chitinolysis in Collimonas fungivorans Ter331. FEMS Microbiology Ecology, 2008, 66, 123-135.	1.3	16
143	Impact of <i>Collimonas</i> bacteria on community composition of soil fungi. Environmental Microbiology, 2009, 11, 1444-1452.	1.8	16
144	Evaluation of Phenolic Root Exudates as Stimulants of Saptrophic Fungi in the Rhizosphere. Frontiers in Microbiology, 2021, 12, 644046.	1.5	16

#	Article	IF	CITATIONS
145	Variability of nitrification potentials in patches of undergrowth vegetation in primary Scots pine stands. Forest Ecology and Management, 1996, 86, 97-103.	1.4	15
146	Draft Genome Sequence of the Antagonistic Rhizosphere Bacterium Serratia plymuthica Strain PRI-2C. Journal of Bacteriology, 2012, 194, 4119-4120.	1.0	14
147	Plant presence reduces root and shoot litter decomposition rates of crops and wild relatives. Plant and Soil, 2019, 438, 313-327.	1.8	14
148	Soil biodiversity and nature-mimicry in agriculture; the power of metaphor?. Outlook on Agriculture, 2022, 51, 75-90.	1.8	14
149	Relative abundance and activity of melanized hyphae in different soil ecosystems. Soil Biology and Biochemistry, 2009, 41, 417-419.	4.2	13
150	Effect of genetic modification of potato starch on decomposition of leaves and tubers and on fungal decomposer communities. Soil Biology and Biochemistry, 2013, 58, 88-98.	4.2	11
151	Early colonizers of unoccupied habitats represent a minority of the soil bacterial community. FEMS Microbiology Ecology, 2015, 91, .	1.3	11
152	Fungal diversity and potential tree pathogens in decaying logs and stumps. Forest Ecology and Management, 2017, 406, 266-273.	1.4	11
153	DiSCount: computer vision for automated quantification of Striga seed germination. Plant Methods, 2020, 16, 60.	1.9	11
154	Stimulated saprotrophic fungi in arable soil extend their activity to the rhizosphere and root microbiomes of crop seedlings. Environmental Microbiology, 2021, 23, 6056-6073.	1.8	11
155	Trait Differentiation within the Fungus-Feeding (Mycophagous) Bacterial Genus Collimonas. PLoS ONE, 2016, 11, e0157552.	1.1	11
156	Atypical Spirotetronate Polyketides Identified in the Underexplored Genus <i>Streptacidiphilus</i> . Journal of Organic Chemistry, 2020, 85, 10648-10657.	1.7	10
157	Impact of Cellulose-Rich Organic Soil Amendments on Growth Dynamics and Pathogenicity of Rhizoctonia solani. Microorganisms, 2021, 9, 1285.	1.6	10
158	Matgrass sward plant species benefit from soil organisms. Applied Soil Ecology, 2012, 62, 61-70.	2.1	9
159	Casing soil microbiome mediates suppression of bacterial blotch of mushrooms during consecutive cultivation cycles. Soil Biology and Biochemistry, 2021, 155, 108161.	4.2	9
160	Soil-wood interactions: Influence of decaying coniferous and broadleaf logs on composition of soil fungal communities. Fungal Ecology, 2017, 30, 132-134.	0.7	9
161	Biodiversity and ecology of soil fungi in a primary succession of a temperate coastal dune system. Nova Hedwigia, 2014, 99, 347-372.	0.2	7
162	Dominant hyphae-associated bacteria of Fusarium oxysporum f. sp. cucumerinum in different cropping systems and insight into their functions. Applied Soil Ecology, 2021, 165, 103977.	2.1	7

#	Article	IF	CITATIONS
163	Changing soil legacies to direct restoration of plant communities. AoB PLANTS, 2017, 9, plx038.	1.2	6
164	Environmental exposure assessment of ethinyl estradiol (EE) from a combined hormonal vaginal contraceptive ring after disposal; leaching from landfills. Science of the Total Environment, 2007, 377, 366-370.	3.9	4
165	No Paradox for Invasive Plants. Science, 2009, 325, 814-814.	6.0	3
166	Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples. FEMS Microbiology Ecology, 1996, 20, 111-120.	1.3	2
167	Beneficial Interactions in the Rhizosphere. Biodiversity Community and Ecosystems, 2014, , 59-80.	0.2	2
168	Comparative Studies on the Disease Prevalence and Population Dynamics of Ginger Blotch and Brown Blotch Pathogens of Button Mushrooms. Plant Disease, 2021, 105, 542-547.	0.7	2
169	Editorial: special issue on the ecology of soil microorganisms. FEMS Microbiology Ecology, 2019, 95, .	1.3	1